SERIES 690XXB SYNTHESIZED CW GENERATOR

GPIB PROGRAMMING MANUAL

490 JARVIS DRIVE MORGAN HILL, CA 95037-2809 P/N: 10370-10342 REVISION: A PRINTED: JANUARY 1999 COPYRIGHT 1999 ANRITSU CO.

WARRANTY

The Anritsu product(s) listed on the title page is (are) warranted against defects in materials and workmanship for one year from the date of shipment.

Anritsu's obligation covers repairing or replacing products which prove to be defective during the warranty period. Buyers shall prepay transportation charges for equipment returned to Anritsu for warranty repairs. Obligation is limited to the original purchaser. Anritsu is not liable for consequential damages.

LIMITATION OF WARRANTY

The foregoing warranty does not apply to Anritsu connectors that have failed due to normal wear. Also, the warranty does not apply to defects resulting from improper or inadequate maintenance by the Buyer, unauthorized modification or misuse, or operation outside of the environmental specifications of the product. No other warranty is expressed or implied, and the remedies provided herein are the Buyer's sole and exclusive remedies.

TRADEMARK ACKNOWLEDGEMENTS

Adobe Acrobat is a registered trademark of Adobe Systems Incorporated.

NOTICE

Anritsu Company has prepared this manual for use by Anritsu Company personnel and customers as a guide for the proper installation, operation and maintenance of Anritsu Company equipment and computer programs. The drawings, specifications, and information contained herein are the property of Anritsu Company, and any unauthorized use or disclosure of these drawings, specifications, and information is prohibited; they shall not be reproduced, copied, or used in whole or in part as the basis for manufacture or sale of the equipment or software programs without the prior written consent of Anritsu Company.

MANUAL:

Title: Series 690XXB Synthesized CW Generator GPIB Programming Manual *Part Number:* 10370-10342 *Rev. Ltr/Date:* A / January 1999

CHANGE PACKET Part Number: 10900-00287

INSTRUCTIONS

- 1. Make the manual changes listed below. The changes are listed in numerical order by page number. Effectivity is all 690XXB models with Firmware Version 1.01 and above.
- 2. The replacement pages provided are for technical changes to the manual. The black bar or bars in the replacement page margins shows the area in which the changes were made.

CHANGE 1, May 1999

- 1. <u>Page 2-5</u> Replace with enclosed pages 2-5 and 2-6, Changed: May 1999.
- 2. Pages 2-35 and 2-36 Replace with enclosed pages 2-35 thru 2-36, Changed: May 1999.
- **3.** <u>Page 2-35A</u> Insert enclosed page 2-35A/2-36A, Changed: May 1999.
- 4. Page A-10

Replace with enclosed pages A-9 thru A-11/A-12, Changed: May 1999.

ECN: MI001082

DECLARATION OF CONFORMITY

Manufacturer's Name: ANRITSU COMPANY

Manufacturer's Address: Microwave Measurements Division 490 Jarvis Drive Morgan Hill, CA 95037-2809 USA

declares that the product specified below:

Product Name:	Synthesized CW / Sweep / Signal Generator
Model Number:	690XXB; 691XXB; 693XXB 680XXC; 681XXC; 683XXC

conforms to the requirement of:

EMC Directive 89/336/EEC as amended by Council Directive 92/31/EEC & 93/68/EEC Low Voltage Directive 73/23/EEC as amended by Council directive 93/68/EEC

Electromagnetic Interference:

Emissions:

CISPR 11:1990/EN55011: 1991 Group 1 Class A

Immunity:

EN 61000-4-2:1995/EN50082-1: 1997 - 4kV CD, 8kV AD EN 61000-4-3:1997/EN50082-1: 1997 - 3V/m ENV 50204/EN50082-1: 1997 - 3V/m EN 61000-4-4:1995/EN50082-1: 1997 - 0.5kV SL, 1kV PL EN 61000-4-5:1995/EN50082-1: 1997 - 1kV L-L, 2kV L-E

Electrical Safety Requirement:

Product Safety;

IEC 1010-1:1990 + A1/EN61010-1: 1993

Marcel Dubois, Corporate Quality Director

JAN 8 99 Date

Morgan Hill, CA

European Contact: For Anritsu product EMC & LVD information, contact Anritsu LTD, Rutherford Close, Stevenage Herts, SG1 2EF UK, (FAX 44-1438-740202)

Chapter 1 - General GPIB Information

1-1	SCOPE OF MANUAL
	Electronic Manual
1-2	INTRODUCTION
1-3	IEEE-488 INTERFACE BUS DESCRIPTION 1-5
	Functional Elements
	Bus Structure
	Data Bus Description
	Data Byte Transfer Control Bus Description 1-8 General Interface Management Bus Description . 1-9
	Device Interface Function Capability 1-10
	Message Types
1-4	690XXB GPIB OPERATION
	Setting GPIB Operating Parameters 1-13
	Selecting the Interface Language 1-13
	Response to GPIB Interface Function Messages . 1-13
<u>Chapter 2</u>	? - Programming with GPIB Commands
2-1	INTRODUCTION
2-2	COMMAND CODES
2-2 2-3	COMMAND CODES2-3DATA INPUT RESTRICTIONS.2-6
2-3	DATA INPUT RESTRICTIONS
2-3	DATA INPUT RESTRICTIONS.2-6PARAMETER AND DATA ENTRY COMMANDS.2-7Opening a Parameter2-7Data Entry2-7
2-3	DATA INPUT RESTRICTIONS
2-3	DATA INPUT RESTRICTIONS.2-6PARAMETER AND DATA ENTRY COMMANDS.2-7Opening a Parameter2-7Data Entry2-7
2-3 2-4	DATA INPUT RESTRICTIONS.2-6PARAMETER AND DATA ENTRY COMMANDS2-7Opening a Parameter2-7Data Entry2-7Using the SYZ Command2-12
2-3 2-4 2-5	DATA INPUT RESTRICTIONS.2-6PARAMETER AND DATA ENTRY COMMANDS2-7Opening a Parameter2-7Data Entry2-7Using the SYZ Command2-12CW FREQUENCY COMMANDS2-13STEP SWEEP COMMANDS2-14Step Sweep Range2-14
2-3 2-4 2-5	DATA INPUT RESTRICTIONS.2-6PARAMETER AND DATA ENTRY COMMANDS2-7Opening a Parameter2-7Data Entry2-7Using the SYZ Command2-12CW FREQUENCY COMMANDS2-13STEP SWEEP COMMANDS2-14Step Sweep Range2-14Alternate Step Sweep.2-15
2-3 2-4 2-5	DATA INPUT RESTRICTIONS.2-6PARAMETER AND DATA ENTRY COMMANDS2-7Opening a Parameter2-7Data Entry2-7Using the SYZ Command2-12CW FREQUENCY COMMANDS2-13STEP SWEEP COMMANDS2-14Step Sweep Range2-14Alternate Step Sweep.2-15Sweep Triggering2-15
2-3 2-4 2-5	DATA INPUT RESTRICTIONS.2-6PARAMETER AND DATA ENTRY COMMANDS2-7Opening a Parameter2-7Data Entry2-7Using the SYZ Command2-12CW FREQUENCY COMMANDS2-13STEP SWEEP COMMANDS2-14Step Sweep Range2-14Alternate Step Sweep.2-15
2-3 2-4 2-5	DATA INPUT RESTRICTIONS.2-6PARAMETER AND DATA ENTRY COMMANDS2-7Opening a Parameter2-7Data Entry2-7Using the SYZ Command2-12CW FREQUENCY COMMANDS2-13STEP SWEEP COMMANDS2-14Step Sweep Range2-14Alternate Step Sweep.2-15Sweep Triggering.2-17

Table of Contents (Continued)

	Linear or Logarithmic Power Level Selection 2-21 RF Output Power Level Selection
	Output Power Leveling 2-21 ALC Power Slope 2-24 Attenuator Decoupling 2-24
2-9	OUTPUT COMMANDS
2-10	STORED SETUP COMMANDS
2-11	SRQ AND STATUS BYTE COMMANDS 2-30
	Status Bytes
2-12	CONFIGURATION COMMANDS
2-13	GROUP EXECUTE TRIGGER COMMANDS 2-36
2-14	LIST SWEEP COMMANDS
	Accessing and Editing a List
2-15	FAST-FREQUENCY- SWITCHING COMMANDS . 2-41
	Loading the Frequency Table 2-41
2-16	POWER-OFFSET- TABLE COMMANDS 2-45
	Loading the Power-Offset Table 2-45
2-17	USER LEVEL CALIBRATION COMMANDS 2-48
	Editing the Table Data
2-18	MASTER-SLAVE OPERATION COMMANDS 2-56
2-19	SELF TEST COMMAND
2-20	MISCELLANEOUS COMMANDS 2-59
2-21	PROGRAM ERRORS
	Invalid-Parameter
2-22	RESET PROGRAMMING AND DEFAULT CONDITIONS
2-23	PROGRAMMING EXAMPLES

Table of Contents (Continued)

<u>Appendix</u>	A - Index of GPIB Commands
A-1	INTRODUCTION

Chapter 1 General GPIB Information

Table of Contents

SCOPE OF MANUAL
Electronic Manual 1-3
INTRODUCTION
IEEE-488 INTERFACE BUS DESCRIPTION 1-5
Functional Elements1-6Bus Structure1-7Data Bus Description1-7Data Byte Transfer Control Bus Description1-7General Interface Management Bus Description1-9Device Interface Function Capability1-10Message Types1-11
690XXB GPIB OPERATION 1-13
Setting GPIB Operating Parameters 1-13 Selecting the Interface Language 1-13 Response to GPIB Interface Function Messages . 1-13

Chapter 1 General GPIB Information

1-1 SCOPE OF MANUAL

This manual provides information for remote operation of the Series 690XXB Synthesized CW Generator using commands sent from an external controller via the IEEE-488 General Purpose Interface Bus (GPIB). It includes the following:

- □ A general description of the GPIB and the bus data transfer and control functions.
- □ A listing of the IEEE-488 Interface Function Messages recognized by the CW generator with a description of its response.
- A complete listing and description of all 690XXB GPIB commands (i.e., Product Specific Commands) that can be used to control CW generator operation with programming examples.

This manual is intended to be used in conjunction with the Series 690XXB Synthesized CW Generator Operation Manual, P/N 10370-10341. Refer to that manual for general information about the 690XXB, including equipment set up and front panel (manual mode) operating instructions.

ElectronicThis manual is available on CD ROM as an AdobeManualAcrobat Portable Document Format (*.pdf) file. The
file can be viewed using Acrobat Reader, a free pro-
gram that is included on the CD ROM. The file is
"linked" such that the viewer can choose a topic to
view from the displayed "bookmark" list and "jump"
to the manual page on which the topic resides. The
text can also be word-searched. Contact Anritsu
Customer Service for price and availability.

This chapter provides a general description of the GPIB and the bus data transfer and control functions. It also contains a listing of the 690XXB's GPIB interface function subset capability and response to IEEE-488 interface function messages.

The GPIB information presented in this chapter is general in nature. For complete and specific information, refer to the following documents: ANSI/IEEE Std 488.1-1987 *IEEE Standard Digital Interface for Programmable Instrumentation* and ANSI/IEEE Std 488.2-1987 *IEEE Standard Codes, Formats, Protocols and Common Commands.* These documents precisely define the total specification of the mechanical and electrical interface, and of the data transfer and control protocols.

1-2 INTRODUCTION

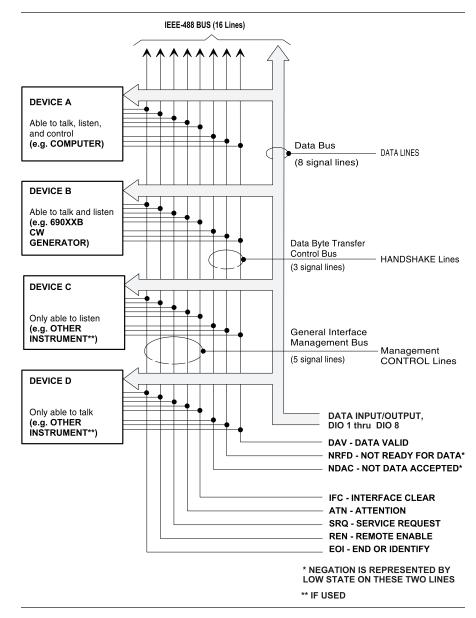


Figure 1-1. Interface Connections and GPIB Bus Structure

1-3 IEEE-488 INTERFACE BUS DESCRIPTION

The IEEE-488 General Purpose Interface Bus (GPIB) is an instrumentation interface for integrating instruments, computers, printers, plotters, and other measurement devices into systems. The GPIB uses 16 signal lines to effect transfer of information between all devices connected on the bus.

The following requirements and restrictions apply to the GPIB.

- No more than 15 devices can be interconnected by one contiguous bus; however, an instrumentation system may contain more than one interface bus.
- □ The maximum total cumulative cable length for one interface bus may not exceed twice the number of devices connected (in meters), or 20 meters—whichever is less.
- □ A maximum data rate of 1 Mb/s across the interface on any signal line.
- □ Each device on the interface bus must have a unique address, ranging from 00 to 30.

The devices on the GPIB are connected in parallel, as shown in Figure 1-1. The interface consists of 16 signal lines and 8 ground lines in a shielded cable. Eight of the signal lines are the data lines, DIO 1 thru DIO 8. These data lines carry messages (data and commands), one byte at a time, among the GPIB devices. Three of the remaining lines are the handshake lines that control the transfer of message bytes between devices. The five remaining signal lines are referred to as interface management lines.

The following paragraphs provide an overview of the GPIB including a description of the functional elements, bus structure, bus data transfer process, interface management bus, device interface function requirements, and message types.

Functional Elements

Effective communications between devices on the GPIB requires three functional elements; a *talker*, a *listener*, and a *controller*. Each device on the GPIB is categorized as one of these elements depending on its current interface function and capabilities.

Talker

A talker is a device capable of sending devicedependent data to another device on the bus when addressed to talk. Only one GPIB device at a time can be an active talker.

Listener

A listener is a device capable of receiving devicedependent data from another device on the bus when addressed to listen. Any number of GPIB devices can be listeners simultaneously.

Controller

A controller is a device, usually a computer, capable of managing the operation of the GPIB. Only one GPIB device at a time can be an active controller. The active controller manages the transfer of devicedependent data between GPIB devices by designating who will talk and who will listen.

System Controller

The system controller is the device that always retains ultimate control of the GPIB. When the system is first powered-up, the system controller is the active controller and manages the GPIB. The system controller can pass control to a device, making it the new active controller. The new active controller, in turn, may pass control on to yet another device. Even if it is not the active controller, the system controller maintains control of the Interface Clear (IFC) and Remote Enable (REN) interface management lines and can thus take control of the GPIB at anytime. Bus Structure

The GPIB uses 16 signal lines to carry data and commands between the devices connected to the bus. The interface signal lines are organized into three functional groups.

- □ Data Bus (8 lines)
- Data Byte Transfer Control Bus (3 lines)
- □ General Interface Management Bus (5 lines)

The signal lines in each of the three groups are designated according to function. Table 1-1 lists these designations.

Table 1-1.	Interface Bus	Signal	Line Designations
------------	---------------	--------	-------------------

Bus Type	Signal Line Name	Function
Data Bus	DIO1–DIO8	Data Input/Output, 1 thru 8
Data Byte Transfer Control Bus	DAV NRFD NDAC	Data Available Not Ready For Data Not Data Accepted
General Interface Management Bus	ATN IFC SRQ REN EOI	Attention Interface Clear Service Request Remote Enable End Or Identify

Data Bus Description The data bus is the conduit for the transfer of data and commands between the devices on the GPIB. It contains eight bi-directional, active-low signal lines —DIO 1 thru DIO 8. Data and commands are transferred over the data bus in byte-serial, bit-parallel form. This means that one byte of data (eight bits) is transferred over the bus at a time. DIO 1 represents the least-significant bit (LSB) in this byte and DIO 8 represents the most-significant bit (MSB). Bytes of data are normally formatted in seven-bit ASCII (American Standard Code for Information Interchange) code. The eighth (parity) bit is not used.

Each byte placed on the data bus represents either a command or a data byte. If the Attention (ATN) interface management line is TRUE while the data is transferred, then the data bus is carrying a bus command which is to be received by every GPIB device. If ATN is FALSE, then a data byte is being transferred and only the active listeners will receive that byte.

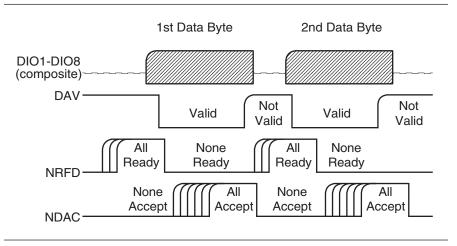


Figure 1-2. Typical GPIB Handshake Operation

Data Byte Transfer Control Bus Description Control of the transfer of each byte of data on the data bus is accomplished by a technique called the "three-wire handshake", which involves the three signal lines of the Data Byte Transfer Control Bus. This technique forces data transfers at the speed of the slowest listener, which ensures data integrity in multiple listener transfers. One line (DAV) is controlled by the talker, while the other two (NRFD and NDAC) are wired-OR lines shared by all active listeners. The handshake lines, like the other GPIB lines, are active low. The technique is described briefly in the following paragraphs and is depicted in Figure 1-2. For further information, refer to ANSI/IEEE Std 488.1.

DAV (Data Valid)

This line is controlled by the active talker. Before sending any data, the talker verifies that NDAC is TRUE (active low) which indicates that all listeners have accepted the previous data byte. The talker then places a byte on the data lines and waits until NRFD is FALSE (high) which indicates that all addressed listeners are ready to accept the information. When both NRFD and NDAC are in the proper state, the talker sets the DAV line TRUE (active low) to indicate that the data on the bus is valid (stable).

NRFD (Not Ready For Data)

This line is used by the listeners to inform the talker when they are ready to accept new data. The talker must wait for each listener to set the NRFD

line FALSE (high) which they will do at their own rate. This assures that all devices that are to accept the data are ready to receive it.

NDAC (Not Data Accepted)

This line is also controlled by the listeners and is used to inform the talker that each device addressed to listen has accepted the data. Each device releases NDAC at its own rate, but NDAC will not go FALSE (high) until the slowest listener has accepted the data byte.

General Interface Management Bus Description The general interface management bus is a group of five signal lines used to manage the flow of information across the GPIB. A description of the function of each of the individual control lines is provided below.

ATN (Attention)

The active controller uses the ATN line to define whether the information on the data bus is a command or is data. When ATN is TRUE (low), the bus is in the command mode and the data lines carry bus commands. When ATN is FALSE (high), the bus is in the data mode and the data lines carry devicedependent instructions or data.

EOI (End or Identify)

The EOI line is used to indicate the last byte of a multibyte data transfer. The talker sets the EOI line TRUE during the last data byte.

The active controller also uses the EOI line in conjunction with the ATN line to initiate a parallel poll sequence.

IFC (Interface Clear)

Only the system controller uses this line. When IFC is TRUE (low), all devices on the bus are placed in a known, quiescent state (unaddressed to talk, unaddressed to listen, and service request idle).

REN (Remote Enable)

Only the system controller uses this line. When REN is set TRUE (low), the bus is in the remote mode and devices are addressed either to listen or to talk. When the bus is in remote and a device is addressed, it receives instructions from the GPIB rather than from its front panel. When REN is set FALSE (high), the bus and all devices return to local operation.

IEEE-488 INTERFACE BUS DESCRIPTION

SRQ (Service Request)

The SRQ line is set TRUE (low) by any device requesting service by the active controller.

Device Interface Function Capability An interface function is the GPIB system element which provides the basic operational facility through which a device can receive, process, and send messages. Each specific interface function may only send or receive a limited set of messages within particular classes of messages. As a result, a set of interface functions is necessary to achieve complete communications among devices on the GPIB. ANSI/IEEE Std 488.1 defines each of the interface functions along with its specific protocol.

ANSI/IEEE Std 488.2 specifies the minimum set of IEEE 488.1 interface capabilities that each GPIB device must have. This minimum set of interface functions assures that the device is able to send and receive data, request service, and repond to a device clear message. Table 1-2 lists the interface function capability of the series 690XXB CW generator.

Function Identifier	Function	690XXB Capability
AH1	Acceptor Handshake	Complete Capability
SH1	Source Handshake	Complete Capability
Т6	Talker	No Talk Only (TON)
L4	Listener	No Listen Only (LON)
SR1	Service Request	Complete Capability
RL1	Remote/Local	Complete Capability
PP1	Parallel Poll	Complete Capability
DC1	Device Clear	Complete Capability
DT1	Device Trigger	Complete Capability
C0, C1, C2, C3, C28	Controller Capability Options	C0, No Capability; C1, System Controller; C2, Send IFC and Take Charge; C3, Send REN; C28, Send IF Messages
E2	TriState Drivers	Three-state bus drivers

Table 1-2. 690XXB Interface Function Capability

Message Types There are three types of information transmitted over the GPIB—interface function messages, device--specific commands, and data and instrument status messages.

Interface Function Messages

The controller manages the flow of information on the GPIB using interface function messages, usually called *commands* or *command messages*. Interface function messages perform such functions as initializing the bus, addressing and unaddressing devices, and setting device modes for remote or local operation.

There are two types of commands—multiline and uniline. Multiline commands are bytes sent by the active controller over the data bus (DIO1-DIO8) with ATN set TRUE. Uniline commands are signals carried by the individual interface management lines.

The user generally has control over these commands; however, the extent of user control depends on the implementation and varies with the specific GPIB interface hardware and software used with the external controller.

Device-Specific Commands

These commands are keywords or mnemonic codes sent by the external controller to control the setup and operation of the addressed device or instrument. The commands are normally unique to a particular instrument or class of instruments and are described in its documentation.

Device-specific commands are transmitted over the data bus of the GPIB to the device in the form of ASCII strings containing one or more keywords or codes. They are decoded by the device's *internal controller* and cause the various instrument functions to be performed.

Data and Instrument Status Messages

These messages are sent by the device to the external controller via the GPIB. They contain measurement results, instrument status, or data files that the device transmits over the data bus in response to specific requests from the external controller. The contents of these messages are instrument specific and may be in the form of ASCII strings or binary data. In some cases data messages will be transmitted from the external controller to the device. For example, messages to load calibration data.

An SRQ (service request) is an interface function message sent *from the device* to the external controller to request service from the controller, usually due to some predetermined status condition or error. To send this message, the device sets the SRQ line of the General Interface Management Bus true, then sends a status byte on the data bus lines.

An SRQ interface function message is also sent by the device in response to a serial poll message from the controller, or upon receiving an Output Status Byte(s) command from the controller. The protocols associated with the SRQ functions are defined in the ANSI/IEEE Std 488.2 document.

The manner in which interface function messages and device-specific commands are invoked in programs is implementation specific for the GPIB interface used with the external controller. Even though both message types are represented by mnemonics, they are implemented and used in different ways.

Normally, the interface function messages are sent automatically by the GPIB driver software in response to invocation of a software function. For example, to send the IFC (Interface Clear) interface function message, one would call the ibsic function of the National Instruments software driver. On the other hand, the command *RST (Reset) is sent in a command string to the addressed device. In the case of the National Instruments example, this would be done by using the ibwrt function call.

1-4	690XXB GPIB OPERATION	All Series 690XXB Synthesized CW Generator functions, settings, and operating modes (except for power on/standby) are controllable using commands sent from an external controller via the GPIB. When in the remote (GPIB) mode, the CW generator functions both as a listener and a talker. The GPIB interface function capability of the 690XXB is listed in Table 1-2 (page 1-10).		
		Setting GPIB Operating Parameters	The 690XXB leaves the factory with the GPIB ad- dress value set to 5 and the data delimiting termi- nator set to carriage return and line feed (CR/LF). A different address value can be entered from the front panel using the Configure GPIB menu. Using this same menu, the data delimiting terminator can be changed to carriage return (CR) only. Refer to Chapter 2 of the Series 690XXB Synthesized CW Generator Operation Manual for the procedure.	
		<i>Selecting the Interface Language</i>	Series 690XXB Synthesized CW Generators with Option 19 can be remotely operated using one of two external interface languages—Native or SCPI. The Native interface language uses a set of 690XXB GPIB Product-Specific commands to control the in- strument; the SCPI interface language uses a set of the Standard Commands for Programmable Instru- ments commands to control the unit. Selecting which of these external interface languages is to be used can be done from the front panel using the Configure GPIB menu. Refer to Chapter 2 of the Se- ries 690XXB Synthesized CW Generators Operation Manual for the procedure.	
		Response to GPIB Interface Function Messages	Table 1-3 (page 1-14) lists the GPIB Interface Func- tion Messages that the 690XXB will recognize and respond to. With the exception of the Device Clear and Selected Device Clear messages, these mes- sages affect only the operation of the 690XXB GPIB interface. The 690XXB response for each message is indicated.	
			Interface function messages are transmitted on the GPIB data lines and interface management lines as either unaddressed or addressed commands. The manner in which these messages are invoked in pro- grams is implementation dependent. For program- ming information, refer to the documentation included with the GPIB Interface for the external controller used.	

Addressed Command	690XXB Response
No Yes	Resets the 690XXB to its default state. (Equivalent to sending the *RST command.)
Yes	Returns the 690XXB to local (front panel) control.
Yes	Executes a string of commands, if programmed.
No	Stops the 690XXB GPIB interface from listening or talking. (The front panel controls are not cleared.)
No	Disables the front panel menu RETURN TO LOCAL soft-key.
No	Places the 690XXB under remote (GPIB) control when it has been addressed to listen.
No	Outputs the serial-poll status byte.
No	Disables the serial-poll function.
Yes	Responds to a parallel-poll messag (PPOLL) by setting assigned data bus line to the logical state (1,0) tha indicates its correct SRQ status.
No	Disables the parallel-poll function.
•	Command No Yes Yes No No No No No Yes

 Table 1-3.
 690XXB Response to GPIB Interface Function Messages

Chapter 2 Programming with GPIB Commands

Table of Contents

2-1	INTRODUCTION
2-2	COMMAND CODES
2-3	DATA INPUT RESTRICTIONS
2-4	PARAMETER AND DATA ENTRY COMMANDS 2-7
	Opening a Parameter2-7Data Entry2-7Using the SYZ Command2-12
2-5	CW FREQUENCY COMMANDS 2-13
2-6	STEP SWEEP COMMANDS
	Step Sweep Range
2-7	FREQUENCY MARKER COMMANDS 2-20
2-8	OUTPUT POWER LEVELING COMMANDS2-21Linear or Logarithmic Power Level Selection2-21RF Output Power Level Selection2-21Alternate Sweep RF Output Power Level2-21Selection2-21Output Power Leveling2-21
	ALC Power Slope 2-24 Attenuator Decoupling 2-24
2-9	OUTPUT COMMANDS
2-10	STORED SETUP COMMANDS

Table of Contents (Continued)

2-11	SRQ AND STATUS BYTE COMMANDS 2-30
	Status Bytes
2-12	CONFIGURATION COMMANDS
2-13	GROUP EXECUTE TRIGGER COMMANDS 2-36
2-14	LIST SWEEP COMMANDS2-37Accessing and Editing a List2-37List Sweep Triggering2-39Generating a List Sweep2-39
2-15	FAST-FREQUENCY-SWITCHING COMMANDS . 2-41 Loading the Frequency Table
2-16	POWER-OFFSET-TABLE COMMANDS 2-45 Loading the Power-Offset Table
2-17	USER LEVEL CALIBRATION COMMANDS 2-48 Editing the Table Data
2-18	MASTER-SLAVE OPERATION COMMANDS 2-56
2-19	SELF TEST COMMAND
2-20	MISCELLANEOUS COMMANDS 2-59
2-21	PROGRAM ERRORS
2-22	RESET PROGRAMMING AND DEFAULT CONDITIONS
2-23	PROGRAMMING EXAMPLES

Chapter 2 Programming with GPIB Commands

2-1 INTRODUCTION This chapter provides information for remote operation of the Series 690XXB Synthesized CW Generator via the GPIB using 690XXB GPIB commands. All GPIB Product-Specific commands that are accepted and implemented by the 690XXB are listed and described by function. Sample programs showing usage of the commands are also included.

2-2 COMMAND CODES There are over three hundred GPIB Product-Specific commands that are accepted and implemented by the 690XXB. These GPIB commands allow the user to program all front panel and menu functions (except for power on/standby). Each GPIB command is a two- or three-character mnemonic code that represents an instrument command or parameter; for example: RST (reset).

Table 2-1, beginning on page 2-4, is a listing of all 690XXB GPIB command mnemonic codes grouped into functional categories. The listing for each category includes references to the paragraph and page number in this chapter where a complete description of that group of commands can be found.

NOTE

A quick way to determine the function of any of the GPIB command codes listed in Table 2-1 is to look up the command code of interest in Appendix A of this manual. Appendix A is an alphabetical index of all 690XXB GPIB command mnemonic codes. A brief description of the function of each command is also included.

GPIB Command Codes Group Function		Para.	Page	
Parameter Entry Commands	-		2-7	
Data Entry/ DataTerminator Commands	0 thru 9, –, ., ADR, CLR, DB, DM, GH, MH, KH, HZ, SEC, MS, US, NS, PCT, GV, MV, KV, DV, PCV, SPS, TMS, VT	2-4	2-10	
CW Frequency Commands	CF0, CF1, CF2, CF3, CF4, CF5, CF6, CF7, CF8, CF9, CM0, CM1, CM2, CM3, CM4, CM5, CM6, CM7, CM8, CM9, SQF, SQU, SQD, ACW	2-5	2-13	
Step Sweep Commands	SF1, SF3, FUL, DF0, DF1, DF5, DF6, AFU, AF1, AF3, AD1, AD5, AD6, AUT, HWT, EXT, TRG, TRS, RSS, SSP, LIS, LGS, MAN, DU1, DU0, TSS, SP1, SP0		2-1	
Frequency Marker Commands	ME1, ME0, MK0, VM1	2-7	2-2	
Power Leveling Commands	LOG, LIN, L0, L1, L2, L3, L4, L5, L6, L7, L8, L9, AL0, AL1, AL2, AL3, AL4, AL5, AL6, AL7, AL8, AL9, RF1, RF0, LO1, LO0, IL1, DL1, PL1, ELF, ELR, LV0, LSP, AT0, AT1, ATT(xx), SL0, SL1, EGO	2-8	2-2	
Output Commands	*IDN?, OI, OFL, OFH, OF0, OF1, OF2, OF3, OF4, OF5, OF6, OF7, OF8, OF9, OM0, OM1, OM2, OM3, OM4, OM5, OM6, OM7, OM8, OM9, OL0, OL1, OL2, OL3, OL4, OL5, OL6, OL7, OL8, OL9, OLO, ODF, OPD, OPS, OSD, OSS, OST, OVN, OWT, OSE, OEM, OES, OSB,OSM, OSR		2-2	
Stored Setup Commands	SAF, SAM, SM, SSN(M ₁₋₉), RCF, RCM, RSN(M ₁₋₉)	2-10	2-2	
Service Request and Status Byte Commands	ES1, ES0, FB1, FB0, LE1, LE0, MB0, MB1, MB2, PE1, PE0, SB1, SB0, SE1, SE0, SQ1, SQ0, UL1, UL0, LS1, LS0, LA1, LA0, EL1, EL0, II1, II0, CSB		2-3	

 Table 2-1.
 690XXB GPIB Command Codes Listed by Function (1 of 2)

GPIB Command Group Function	Command Codes	Para.	Page
Configuration Commands	BPN, BPP, FRS, PPO, PPC, RC0, RC1, RT0, RT1, RO0, RO1, TR0, TR1	2-12	2-35
Group Execute Trigger (GET) Commands	GTC, GTD, GTF, GTL, GTO, GTS, GTT, GTU, Y	2-13	2-36
List Sweep Commands	LST, ELI(xxxx), ELN(x), LF, LP, LIB(xxxx), LIE(xxxx), AUT, HWT, EXT, TRG, MNT, UP, DN, LEA, CTL	2-14	2-37
Fast-Frequency- Switching Commands	ZL(X ₀₀₀₋₉₉₉), ZEL, ZS(X ₀₀₀₋₉₉₉), ZPN(bbbb), ZTL(bbbbnnnnD8D8D8D8)	2-15	2-41
Power-Offset- Table Commands	PT0, PT1, PTC, PTL	2-16	2-45
User Level Calibration Commands	LU0, LU1, LU2, LU3, LU4, LU5, LUS, LUR	2-17	2-48
Master-Slave Operation Commands	S0, S1	2-18	2-56
Self Test Commands	TST	2-19	2-57
Miscellaneous Commands	ADD, CS0, CS1, DS0, DS1, RL, RST, SNR	2-20	2-59

 Table 2-1.
 690XXB GPIB Command Codes Listed by Function (2 of 2)

2-3 DATA INPUT RESTRICTIONS

The 690XXB CW generator does *not* accept parameter or data entries in an exponential or scientific notation format. The accepted data formats are as follows:

- □ A decimal or integer format for entering parameters and data.
- □ A binary-byte format for entering the status byte mask commands (paragraph 2-11), the RCF and RCM stored-setup commands (paragraph 2-10), the ZTL fast-frequency-switching command (paragraph 2-15), the power-offset-table commands (paragraph 2-16), and the LUR user level calibration command (paragraph 2-17).

Programming Note: The CW generator only recognizes the following 65 characters:

- □ The 52 upper- and lower-case alphabetic characters. (The 690XXB accepts both upper- and lower-case characters without distinguishing between the cases).
- \Box The minus sign (–).
- \Box The comma (,).
- □ The decimal point (.).
- □ The numerals between 0 and 9.

All characters other than the 65 listed above are ignored and can be interspersed between meaningful characters without ill effect. This use of other characters can improve readability. For example, the two command strings below are valid and interchangable.

"F12.754GHF27.792GHSF1SWPMK0L12DM"

"F1=2.754 GH, F2=7.792 GH, SF1, SWP, MK0, L1=2 DM"

2-4 PARAMETER AND DATA ENTRY COMMANDS

Table 2-2 lists the command mnemonic codes that open parameters for data entry. The table also provides the range of values permitted for each parameter and the data terminator mnemonic codes for each. Tables 2-3 and 2-4 (pages 2-10 and 2-11) list the data entry and data terminator command mnemonic codes.

Opening aAll of the commands listed in Table 2-2 open a**Parameter**parameter for data entry. Once opened, a parameter
remains open until one of the following occurs:

- □ Another parameter is opened.
- □ A function other than video markers or output power leveling is commanded.
- □ The CLO (close open parameter) command is received.

Data Entry When a parameter is open for data entry, its value can be changed as follows:

- □ By sending a numeric value followed by the appropriate terminator code.
- By incrementing or decrementing its value using an associated step size.

NOTE

An appropriate data terminator *must* be used to terminate a numeric-parameter entry, and it *must* immediately follow the numeric value. If it does not, a parameter entry error will result.

The parameter and data entry commands do not affect the CW generator's output unless the parameter being changed is also the current output parameter. The commands, therefore, may be used to change the preset values of parameters without altering the 690XXB's output.

Example: Assume that the 690XXB is executing an F3-F4 sweep from 3 GHz to 10 GHz. Changing the value of F1 to 3 GHz with the command string "F1 3 GH" does not affect the current output of the CW generator. However, changing the value of F4 with the command string "F4 16.01 GH" alters the output of the 690XXB because it changes the end point of the F3-F4 sweep to 16.01 GHz.

PARAMETER AND DATA ENTRY COMMANDS

MNEMONIC CODE	PARAMETER	VALUES	TERMINATOR
F0	Opens the F0 parameter	Dependent on the	GH
F1	Opens the F1 parameter	frequency range of	MH
F2	Opens the F2 parameter	the instrument	KH
F3	Opens the F3 parameter		HZ
F4	Opens the F4 parameter		
F5	Opens the F5 parameter		
F6	Opens the F6 parameter		
F7	Opens the F7 parameter		
F8	Opens the F8 parameter		
F9	Opens the F9 parameter		
MO	Opens the M0 parameter	Dependent on the	GH
M1	Opens the M1 parameter	frequency range of	MH
M2	Opens the M2 parameter	the instrument	KH
M3	Opens the M3 parameter		HZ
M4	Opens the M4 parameter		
M5	Opens the M5 parameter		
M6	Opens the M6 parameter		
M7	Opens the M7 parameter		
M8	Opens the M8 parameter		
M9	Opens the M9 parameter		
XL0	Opens the L0 parameter	Dependent on the	DM
XL1	Opens the L1 parameter	power level range	(Logarithmic)
XL2	Opens the L2 parameter	of the instrument	VT
XL3	Opens the L3 parameter		(Linear)
XL4	Opens the L4 parameter		
XL5	Opens the L5 parameter		
XL6	Opens the L6 parameter		
XL7	Opens the L7 parameter		
XL8	Opens the L8 parameter		
XL9	Opens the L9 parameter		
DLF	Opens the ∆F parameter	Dependent on the	GH
DFF	Opens the ΔF parameter	frequency range of	MH
DFM	Opens the ΔF parameter	the instrument	KH
			HZ
	Slave Unit Frequencies		
SLF0	Opens the F0 parameter	Dependent on the	GH
SLF1	Opens the F1 parameter	frequency range of	MH
SLF2	Opens the F2 parameter	the instrument	KH
SLF3	Opens the F3 parameter		HZ
SLF4	Opens the F4 parameter		
SLF5	Opens the F5 parameter		
SLF6	Opens the F6 parameter		
SLF7	Opens the F7 parameter		
SLF8	Opens the F8 parameter		
SLF9	Opens the F9 parameter		

Table 2-2. Parameter Entry Commands (1 of 3)

PROGRAMMING WITH GPIB COMMANDS

PARAMETER AND DATA ENTRY COMMANDS

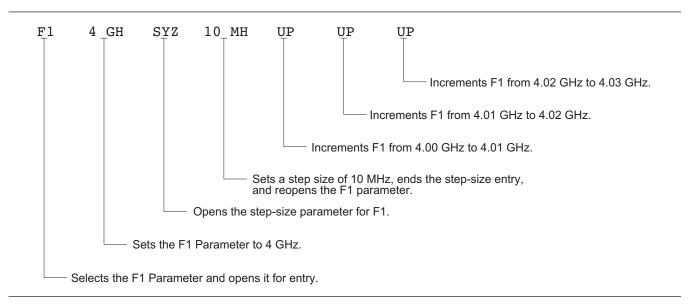
MNEMONIC CODE	PARAMETER	VALUES	TERMINATOR
SLM0 SLM1 SLM2 SLM3 SLM4 SLM5 SLM6 SLM6 SLM7 SLM8 SLM9	Slave Unit Frequencies Opens the M0 parameter Opens the M1 parameter Opens the M2 parameter Opens the M3 parameter Opens the M4 parameter Opens the M5 parameter Opens the M6 parameter Opens the M7 parameter Opens the M8 parameter Opens the M9 parameter	Dependent on the frequency range of the instrument	GH MH KH HZ
SLDF	Opens the ΔF parameter for the slave unit	Dependent on the frequency range of the instrument	GH MH KH HZ
SDT	Opens the step sweep dwell time parameter	1 ms to 99 sec	MS SEC
SNS	Opens the step sweep number of steps parameter	1 to 10,000	SPS
SWT	Opens the step sweep and CW ramp time parameter	30 ms to 99 sec	MS SEC
LOS	Opens the level offset parameter	+100 dB to –100 dB	DB
PDT	Opens the power sweep dwell time parameter	1 ms to 99 sec	MS SEC
PNS	Opens the power sweep number of steps parameter	1 to 10,000	SPS
PVT	Opens the ALC power slope pivot point frequency parameter	Dependent on the frequency range of the instrument	GH MH KH HZ
SLP	Opens the ALC power slope value parameter	0 to 255	SPS
EGI	Opens the Reference Level DAC setting parameter (in external power leveling mode)	0 to 255	SPS

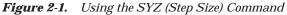
Table 2-2. Parameter Entry Commands (2 of 3)

MNEMONIC CODE	PARAMETER	VALUES	TERMINATOR
SOF	Opens the frequency offset parameter for the slave unit (in a 360B VNA configuration)	Dependent on the frequency range of the instrument	GH MH KH HZ
SLV, SLL1	Opens the main power level parameter (L1) for the slave unit	Dependent on the power level range of the instrument	DM (Log) VT(Linear)
SLL2	Opens the alternate sweep power level parameter (L2) for the slave unit	Dependent on the power level range of the instrument	DM (Log) VT (Linear)
ADD	Opens the GPIB address parameter	1 to 30	ADR
FRS	Opens the frequency scaling reference multiplier parameter	0.1 to 14	TMS
LDT	Opens the list sweep dwell time parameter	1 ms to 99s	MS SEC
SYZ	Opens the step-size parameter for updating	Dependent on the open parameter	N/A
UP	Increments the open parameter by the step size	N/A	N/A
DN	Decrements the open parameter by the step size	N/A	N/A
CLO	Closes the previously opened parameter	N/A	N/A

<i>Table 2-2.</i>	Parameter Entry Commands (3 of 3)
-------------------	-----------------------------------

<i>Table 2-3.</i>	Data Entry	Commands
-------------------	------------	----------


MNEMONIC CODE	DESCRIPTION	
0, 1, 2, 3, 4, 5, 6, 7, 8, 9	Numerals for parameter value entries	
_	Change sign of input	
	Decimal point	
CLR	Clear data entry	

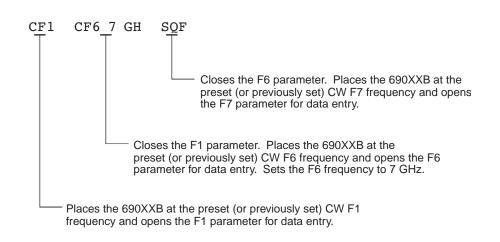

PROGRAMMING WITH GPIB COMMANDS

MNEMONIC CODE	DESCRIPTION	
ADR	GPIB Address	
DB	Decibels (dB)	
DM	dBm	
GH	GHz	
MH	MHz	
КН	kHz	
HZ	Hertz (Hz)	
SEC	Seconds	
MS	Milliseconds (ms)	
US	Microseconds (μs)	
NS	Nanoseconds (ns)	
PCT	Percent (%)	
GV	GHz per volt (GHz/V)	
MV	MHz per volt (MHz/V)	
KV	kHz per volt (kHz/V)	
DV	Decibel per volt (dB/V)	
PCV	Percent per volt (%/V)	
SPS	Steps	
TMS	Times	
VT	Volts	

Table 2-4. Data Terminator Codes	
--	--

<i>Using the SYZ Command</i>	Each 690XXB parameter has an associated step size that can be used to increment or decrement its value. Parameters that have common units share a common step size. For example, the frequency pa- rameters (F0-F9, M0-M9, and Δ F) have a common step size as do the power level parameters (XL0- XL9, L0-L9, and Level Offset). Other parameters, such as step sweep dwell time, have individual step sizes.
	To set the step size for a parameter, first send the command code to open the parameter, then send the SYZ command. Now set the step size by sending a numeric string with the proper terminator. When the terminator is received, the step size is accepted and the original parameter is again open for entry.
	Figure 2-1 shows how the SYZ command can be used to increment a parameter. In this example, the F1 frequency parameter is set to 4 GHz, the step size is set to 10 MHz, and F1 frequency is incre- mented three times by the value of the step size.

2-5 CW FREQUENCY COMMANDS


Table 2-5 lists the CW frequency command mnemonic codes. These commands call up each of the 20 preset (or previously set) CW frequencies. Each command causes its associated CW frequency to be output and opens that frequency's parameter for data entry.

The command, SQF, accesses the preset frequencies in sequential order—that is, F0 to F9 and M0 to M9.

MNEMONIC CODE	FUNCTION	OPENS FOR ENTRY
CF0	Set CW mode at F0	F0 parameter
CF1	Set CW mode at F1	F1 parameter
CF2	Set CW mode at F2	F2 parameter
CF3	Set CW mode at F3	F3 parameter
CF4	Set CW mode at F4	F4 parameter
CF5	Set CW mode at F5	F5 parameter
CF6	Set CW mode at F6	F6 parameter
CF7	Set CW mode at F7	F7 parameter
CF8	Set CW mode at F8	F8 parameter
CF9	Set CW mode at F9	F9 parameter
CM0	Set CW mode at M0	M0 parameter
CM1	Set CW mode at M1	M1 parameter
CM2	Set CW mode at M2	M2 parameter
CM3	Set CW mode at M3	M3 parameter
CM4	Set CW mode at M4	M4 parameter
CM5	Set CW mode at M5	M5 parameter
CM6	Set CW mode at M6	M6 parameter
CM7	Set CW mode at M7	M7 parameter
CM8	Set CW mode at M8	M8 parameter
CM9	Set CW mode at M9	M9 parameter
SQF	Scan to the next higher preset	CW frequency parameter
	CW frequency.	then selected
SQU	Scan up to the next higher preset	CW frequency parameter
	CW frequency.	then selected
SQD	Scan down to the next lower preset	CW frequency parameter
	CW frequency.	then selected
ACW	Activates the currently scanned frequency as CW.	CW frequency parameter then selected

Programming Note: CW generator response to a SQF command depends on the state the instrument is in at the time the command is received. For example, if the 690XXB is in a CW mode of operation with the current output frequency open for entry, the SQF command (1) causes the output to change to the next sequential frequency and (2) opens that frequency's parameter for data entry. However, if the instrument is in any other mode of operation, the SQF command causes it to switch to the last CW frequency that was output and opens that parameter for data entry.

Figure 2-2 is an example of a CW frequency command string.

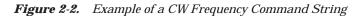


Table 2-6 (page 2-16) lists the step sweep command mnemonic codes. These commands are divided into five subclasses and are described in the following paragraphs.

Step SweepSeven step sweep ranges are available. The SF1 and
SF3 commands select the sweep ranges of F1-F2
and F3-F4 respectively; the FUL command selects a
full band sweep from the CW generator's low fre-
quency limit to its high frequency limit.

The DF0, DF1, DF5, and DF6 commands each select a symmetrical frequency sweep around F0, F1, F5, and F6 respectively. The width of the sweep is determined by the ΔF frequency parameter.

Programming Examples:

Programming **"F1 2 GH F2 8 GH SF1**" sets F1 to 2 GHz, F2 to 8 GHz, and implements a F1-F2 frequency sweep.

2-6 STEP SWEEP COMMANDS

	Programming " DLF 6 GH F5 7 GH DF5 " sets ΔF to 6 GHz, F5 to 7 GHz, and implements a F5- ΔF frequency sweep.
	Programming Note: If the commanded step sweep range is invalid, a parameter error (para. 2-21) will be generated, and the output of the CW generator will not be altered.
	A step sweep range is invalid if the ΔF frequency parameter results in a sweep that is outside the range of the instrument.
Alternate Step Sweep	Six alternate step sweep commands are available. If the 690XXB is sweeping when the alternate sweep command is received, the CW generator's output will alternate between the commanded sweep and the sweep then being executed.
	Programming Example: Assume that the 690XXB had been previously pro- grammed and was then executing an F1-F2 sweep. Programming "AF3 " would then activate the F3-F4 sweep and cause it to alternate with the F1-F2 sweep.
	Programming Note: An alternate step sweep command will only be rec- ognized when the 690XXB has been programmed to sweep. It will be ignored at all other times.
Sweep Triggering	Three modes of sweep triggering are available over the bus—Automatic, External, and Single. The AUT command selects automatic sweep triggering; the HWT command selects external triggering; and the EXT command selects single sweep triggering.
	When automatic sweep triggering is selected, the sweep continually sweeps from its start frequency (or power level) to its stop frequency (or power level) with optimal retrace time.
	When external sweep triggering is selected, a single sweep occurs when triggered by an external TTL- compatible clock pulse to the rear panel AUX I/O connector.

When single sweep triggering is selected, a single sweep starts when the TRG or TRS command is received. The RSS command resets the sweep to its start frequency (or power level), whenever the command is received while a single sweep is in progress.

 Table 2-6.
 Step Sweep Commands

MNEMONIC CODE	FUNCTION	OPENS FOR ENTRY
	Step Sweep Range	
SF1	Selects the F1-F2 step sweep mode	None
SF3	Selects the F3-F4 step sweep mode	None
FUL	Selects the Full Range step sweep mode	None
DF0	Selects the F0-∆F step sweep mode	None
DF1	Selects the F1- Δ F step sweep mode	None
DF5	Selects the F5- Δ F step sweep mode	None
DF6	Selects the F6- Δ F step sweep mode	None
	Alternate Step Sweep	
AFU	Selects Full Range alternate step sweep	None
AF1	Selects F1-F2 alternate step sweep	None
AF3	Selects F3-F4 alternate step sweep	None
AD1	Selects F1- Δ F alternate step sweep	None
AD5	Selects F5- Δ F alternate step sweep	None
AD6	Selects F6- Δ F alternate step sweep	None
	Sweep Triggering	
AUT	Selects Auto Trigger	None
HWT	Selects External Trigger	None
EXT	Selects Single Trigger	None
TRG	Triggers a Single Sweep	None
TRS	Triggers a Single Sweep	None
RSS	Resets a Sweep if in progress	None
	Step Sweep Select	
SSP	Selects Step Sweep (Linear)	None
LIS	Selects Linear Step Sweep (Default Mode)	None
LGS	Selects Logarithmic Step Sweep	None
MAN	Selects Manual (Step) Sweep	None
DU1	Selects Dual Step Sweep mode	None
DU0	Deselects Dual Step Sweep mode	None
TSS	Steps to next point in DU1 mode	None
	Special Step Sweep (Steps Not Equally Spaced)	
SP1	Selects non-equally spaced step sweep	None
SP0	Deselects non-equally spaced step sweep	None

Step Sweep Select Four commands are available—SSP and LIS select a linear step sweep, LGS selects a logarithmic step sweep, and MAN selects a manual (step) sweep. The selected step sweep mode applies to all sweep ranges. Figure 2-3 shows an example of a step sweep command string.

Programming Note:

The MAN command only provides for setting up the CW generator for a manual (step) sweep. It must be accompanied by the RL command to return the instrument to local (front panel) control in order for the operator to perform the manual (step) sweep.

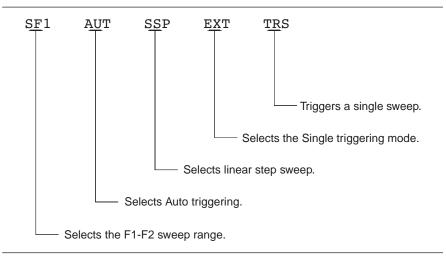


Figure 2-3. Example of a Sweep Command String

Dual Step Sweep Mode

The dual step sweep mode provides for generating synchronized, step sweep outputs from two 690XXBs at a frequency offset. Figure 2-4 shows an example of dual step sweep programming.

```
"DUAL"
 10 !
 20 CLEAR
 30 DISP "ENTER # OF STEPS"
 40 INPUT S
 50 DISP "ENTER WAIT TIME [mS]
 60 INPUT W
 70 WAIT 100
 80 DISP "ENTER 'LO' START FREQ [GHz]"
 90 INPUT F1
100 DISP "ENTER 'LO' STOP FREQ [GHz]
110 INPUT F2
120 DISP "ENTER OFFSET [GHz]
130 INPUT F3
140 !
150 ! Initialize both 690XXB's
160 !
170 OUTPUT 705 ; "CF1F1"; F1; "GHF2"; F2;
    "GHSNS";S; "SPSSSPEXTCLO"
180 OUTPUT 706 ; "CF1F1"; F1+F3; "GHF2";
    F2+F3; "GHSNS"; S; "SPSSSPEXTCLO"
190 WAIT 1000
200 !
210 ! Set both to dual mode and enable
    GET to end DWELL
220 !
230 SEND 7 ; CMD "%&" DATA "GTLDU1SF1"
    EOL
240 WAIT 100
250 ! Trigger the sweep and wait for
    retrace to finish
260 SEND 7 ; CMD "%&" DATA "TRS" EOL
270 WAIT 100
280 ! Listen address both 690XXB's
290 SEND 7 ; CMD "%&"
300 FOR C+1 TO S+1
310 WAIT W
320 ! Trigger both to next point
330 TRIGGER 7
340 NEXT C
350 GOTO 260
```

Figure 2-4. Dual Step Sweep Programming Example

Special StepThis special step sweep provides for a step sweepSweepThis special step sweep provides for a step sweepthat has non-equally spaced steps. It can be used in
any of the available sweep ranges (F1-F2, F3-F4,
Full, F0- Δ F, F1- Δ F, F5- Δ F, and F6- Δ F). The start
frequency in this sweep must be equal to the first
frequency programmed with the ZL(X000-999) com-
mand (para. 2-15). The intermediate steps can be
programmed to be any frequency within the range of
the programmed sweep.

Programming Note:

The SP1 command can be used with the dual step sweep mode.

Figure 2-5 shows an example of special step sweep programming.

For this example, assume a frequency sweep of 3 GHz to 10 GHz, with steps at 3, 6, 8, 9, and 10 GHz.

Sample Coding in BASIC

10 OUTPUT 705; "ZLOOO 3GH 6GH 8GH 9GH 10GH ZEL" 20 OUTPUT 705; "F1 3GH F2 10GH SNS 4SPS" 30 OUTPUT 705; "SP1 SSP SF1"

Explanation of Code

Line 10 sets up the step frequencies. Line 20 sets start and stop frequencies and number of steps (frequency points -1). Line 30 set the CW generator to SP1, Step Sweep, and F1-F2 sweep range.

Figure 2-5. Special Step Sweep Programming Example

2-7 FREQUENCY MARKER COMMANDS Table 2-7 lists the frequency marker command mnemonic codes. These commands provide for (1) selecting a CW frequency as a potential marker, (2) selecting a potential marker as an active marker, and (3) individually turning markers on and off.

The ME1 command will enable a marker at the current frequency that is open for update; the ME0 command will disable the same marker. If a frequency parameter is not open, no action will be taken. The VM1 command will turn on video markers. The MK0 command will turn all markers off.

Figure 2-6 shows an example of a frequency marker command string.

Table 2-7. Frequency Marker Commands

MNEMONIC CODE	FUNCTION	OPENS FOR ENTRY
ME1	Enables a marker at the active frequency (F0-F9 or M0-M9).	None
ME0	Disables the marker at the active frequency.	
MK0	Turns off markers. Enabled markers remain en-Nabled, but are not active.	
VM1	Turns on the video marker mode.	None

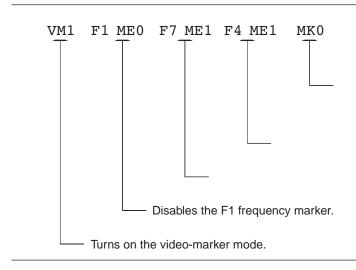


Figure 2-6. Example of a Frequency Marker Command String

2-8 OUTPUT POWER LEVELING COMMANDS

Table 2-8 lists the output power leveling command mnemonic codes. These commands provide for (1) selecting linear or logarithmic power level operation, (2) selecting an RF output power level, (3) leveling the output power, and (4) turning the output power leveling off. In addition, commands are provided for the level offset, power level sweep, ALC power slope, and step attenuator decoupling functions. Figure 2-7 (page 2-24) shows an example of an output power level command string.

Linear or Logarithmic Power Level Selection	Power level operations can be linear or logarithmic. The command, LOG, selects logarithmic power level operation. In logarithmic mode, power level entries and outputs are in dBm and power level sweeps are logarithmic. This is the default mode.
	The command, LIN, selects linear power level opera- tion. In linear mode, power level entries and outputs are in mV and power level sweeps are linear.
RF Output Power Level Selection	The commands, L0 thru L9, call up each of the pre- set (or previously set) output power levels. Each command causes its associated RF power level to be output and opens that power level's parameter for data entry. Each command will also deselect any other previously programmed power level and will turn off a power level sweep, if active.
Alternate Sweep RF Output Power Level Selection	In the alternate sweep mode, the commands, AL0 thru AL9, call up each of the preset (or previously set) L0 to L9 output power levels. Each command causes its associated RF power level to be output during the alternate sweep. Each command will also deselect any other previously programmed alternate sweep power level. The commands do not open the L1 to L9 power level parameters for data entry. Use the commands, XL0 thru XL9 or L0 thru L9, to enter new power level values.
Output Power Leveling	There are three output power leveling modes of op- eration—internal, external (detector or power me- ter), and fixed gain (leveling off). The IL1 command selects the internal leveling mode. In this mode, a signal from an internal level detector is used to level the output power. This is the default mode.
	The DL1 command selects the external (detector) leveling mode; the PL1 command selects the exter- nal (power meter) leveling mode. In this mode, the output power is leveled using a signal from an exter-

nal detector (power meter) connected to the EXTER-NAL ALC IN connector. In the external power leveling mode, the EGI command provides for entering a setting for the Reference Level DAC to control the ALC gain. The LVO command selects the fixed gain (leveling off) mode. Each command will also deselect any other previously programmed output power leveling mode.

Programming Example:

Programming "**PL1 EGI 140 SPS**" selects external leveling of the output power using a signal from an external power meter and sets the Reference Level DAC to 140.

Table 2-8. Power Leveling Commands (1 of 2)

MNEMONIC CODE	FUNCTION	OPENS FOR ENTRY
LOG	Selects logarithmic power level operation. (This is the default mode.)	None
LIN	Selects linear power level operation. None	
LO	Set RF output power level to L0	LO
L1	Set RF output power level to L1	L1
L2	Set RF output power level to L2	L2
L3	Set RF output power level to L3	L3
L4	Set RF output power level to L4	L4
L5	Set RF output power level to L5	L5
L6	Set RF output power level to L6	L6
L7	Set RF output power level to L7	
L8	Set RF output power level to L8	
L9	Set RF output power level to L9	L9
AL0	Set alternate sweep RF output level to L0 Nor	
AL1	Set alternate sweep RF output level to L1	None
AL2	Set alternate sweep RF output level to L2	None
AL3	Set alternate sweep RF output level to L3 No	
AL4	Set alternate sweep RF output level to L4	None
AL5	Set alternate sweep RF output level to L5 No	
AL6	Set alternate sweep RF output level to L6 Nor	
AL7	Set alternate sweep RF output level to L7	None
AL8	Set alternate sweep RF output level to L8	None
AL9	Set alternate sweep RF output level to L9 No	
RF1	Turns on the RF output. (This is the default None mode.)	
RF0	Turns off the RF output. None	

	wer Levening Commands (2 of 2)	
MNEMONIC CODE	FUNCTION	OPENS FOR ENTRY
LO1	Turns on the Level Offset function. The value of the Level Offset parameter is added to the level measured by the internal leveling loop. The re- sultant power level value is displayed.	None
LO0	Turns off the Level Offset function.	None
IL1	Selects internal leveling of the output power. (This is the default mode.) Deselects the DL1 or PL1 leveling modes, if previously programmed.	None
DL1	Selects external leveling of the output power, using a signal from an external detector con- nected to the EXTERNAL ALC IN connector. Deselects the IL1 or PL1 leveling modes, if pre- viously programmed.	
PL1	Selects external leveling of the output power us- ing a signal from an external power meter con- nected to the EXTERNAL ALC IN connector. Deselects the IL1 and DL1leveling modes, if previously programmed.	None
ELF	Selects front panel external leveling input.	None
ELR	Selects rear panel external leveling input.	None
LV0	Turns off leveling of the output power.	None
LSP	Selects the Power Sweep mode. The power level will sweep as determined by the preset (or previously set) dwell-time and number-of-steps parameters.	None
AT1	Selects ALC step attenuator decoupling.	None
AT0	Deselects ALC step attenuator decoupling. No	
ATT(xx)	Sets step attenuator value to xx (×10 dB) in the ALC step attenuator decouple mode. xx is an unsigned integer between 00 (0 dB attenuation) and 11 (110 dB attenuation).	None
SL1	Turns on the ALC power slope function.	None
SL0	Turns off the ALC power slope function.	None
EGO	EGO Outputs the value of the Reference Level DAC Nor setting in external power leveling mode.	

Table 2-8. Power Leveling Commands (2 of 2)

ALC Power Slope	The ALC power slope function provides for linearly increasing or decreasing output power as the fre- quency increases to compensate for system, cable, and wavegude variations dure to changes in fre- quency. The SL1 command turns on the ALC power slope function. The power slope value is changed using the SLP command and the the pivot point fre- quency is changed using the PVT command. The SL0 command turns off the ALC power slope func- tion.
	Programming Example: Programming "SL1 SLP 128 SPS PVT 2.0 GH " turns on the ALC power slope function and sets the power slope value to 128 adn the pivot point fre- quency to 2 Ghz.
Attenuator Decoupling	The attenuator decoupling function provides for de- coupling of the step attenuator (if equipped) from the ALC system. The AT1 command decouples the step attenuator, the ATT(xx) command provides for setting the step attenuator value for 0 to 110 dB in 10 dB increments, and the AT0 command deselects the attenuator decoupling function.
	Programming Example: Programming "AT1 ATT08" decouples the step

Programming **"AT1 ATT08**" decouples the step attenuator from the ALC system and sets the step attenuator value to 80 dB.

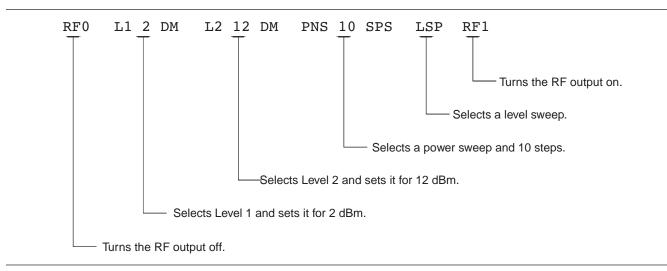


Figure 2-7. Example of an Output Power Level Command String

2-9 OUTPUT COMMANDS

Table 2-9 lists the output command mnemonic codes. These commands provide for the output of data from the CW generator to the controller. Figure 2-8 (page 2-27) shows examples of output command programming.

MNEMONIC	put Commands (1 of 3)		
CODE	FUNCTION		
*IDN?	Causes the CW generator to return an identification string in IEEE-488.2 specified <nr1> format (four fields separated by commas). The fields are:<manufacturer>, <model>, <serial #="">, <firmware level="" revision="">; where the actual model number, serial number, and firmware revision of the 690XXB will be passed.</firmware></serial></model></manufacturer></nr1>		
OI	Causes the CW generator to identify itself by sending the following parameter information over the bus; model number, low-end frequency, high-end frequency, minimum output power level, maximum output power level, software revision number, serial number, model prefix (A or B), and series (1 or 2). This command can be used to send parameter information to the controller automatically, thus relieving the operator from having to input the information manually. The string is 36 characters long.		
OFL	Returns the low-end frequency value (in MHz) to the controller.		
OFH	Returns the high-end frequency value (in MHz) to the control- ler.		
OF0	Returns the F0 frequency value (in MHz) to the controller.		
OF1	Returns the F1 frequency value (in MHz) to the controller.		
OF2	Returns the F2 frequency value (in MHz) to the controller.		
OF3	Returns the F3 frequency value (in MHz) to the controller.		
OF4	Returns the F4 frequency value (in MHz) to the controller.		
OF5	Returns the F5 frequency value (in MHz) to the controller.		
OF6	Returns the F6 frequency value (in MHz) to the controller.		
OF7	Returns the F7 frequency value (in MHz) to the controller.		
OF8	Returns the F8 frequency value (in MHz) to the controller.		
OF9	Returns the F9 frequency value (in MHz) to the controller.		
OM0	Returns the M0 frequency value (in MHz) to the controller.		

Table 2-9. Output Commands (1 of 3)

MNEMONIC CODE	FUNCTION
OM1	Returns the M1 frequency value (in MHz) to the controller.
OM2	Returns the M2 frequency value (in MHz) to the controller.
OM3	Returns the M3 frequency value (in MHz) to the controller.
OM4	Returns the M4 frequency value (in MHz) to the controller.
OM5	Returns the M5 frequency value (in MHz) to the controller.
OM6	Returns the M6 frequency value (in MHz) to the controller.
OM7	Returns the M7 frequency value (in MHz) to the controller.
OM8	Returns the M8 frequency value (in MHz) to the controller.
OM9	Returns the M9 frequency value (in MHz) to the controller.
OL0	Returns the L0 power value (in dBm when in log mode; in mV when in linear mode) to the controller.
OL1	Returns the L1 power value (in dBm when in log mode; in mV when in linear mode) to the controller.
OL2	Returns the L2 power value (in dBm when in log mode; in mV when in linear mode) to the controller.
OL3	Returns the L3 power value (in dBm when in log mode; in mV when in linear mode) to the controller.
OL4	Returns the L4 power value (in dBm when in log mode; in mV when in linear mode) to the controller.
OL5	Returns the L5 power value (in dBm when in log mode; in mV when in linear mode) to the controller.
OL6	Returns the L6 power value (in dBm when in log mode; in mV when in linear mode) to the controller.
OL7	Returns the L7 power value (in dBm when in log mode; in mV when in linear mode) to the controller.
OL8	Returns the L8 power value (in dBm when in log mode; in mV when in linear mode) to the controller.
OL9	Returns the L9 power value (in dBm when in log mode; in mV when in linear mode) to the controller.
OLO	Returns the Level Offset power value (in dB when in log mode; in mV when in linear mode) to the controller.

Table 2-9. Output Commands (2 of 3)

MNEMONIC CODE	FUNCTION
ODF	Returns the ΔF frequency value (in MHz) to the controller.
OPD	Returns the dwell time of the power sweep (in ms) to the controller.
OPS	Returns the number-of-steps of the power sweep to the controller.
OSD	Returns the dwell time of the step sweep (in ms) to the controller.
OSS	Returns the number-of-steps of the step sweep to the controller.
OST	Returns the sweep time value (in ms) to the controller.
OVN	Returns the ROM version number to the controller.
OWT	Returns the GPIB termination status to the controller. (0=CR; 1=CRLF)
OSE	Returns the last GPIB syntax error to the controller.
OEM	Returns the Extended SRQ Mask bytes (3 binary bytes) to the controller.
OES	Returns the GPIB Status bytes (3 binary bytes) to the controller.
OSB	Returns the Primary GPIB Status byte to the controller.
OSM	Returns the Primary SRQ Mask byte to the controller.
OSR	Returns the self-test results (6 binary bytes) to the controller.

<i>Table 2-9.</i>	Output Commands	(3 of 3)
-------------------	-----------------	----------

760 OUTPUT 705;"OF1" 770 ENTER 705;A 780 PRINT "F1 is set at ";A;" MHz"

1050 OUTPUT 705;"OSS" 1060 ENTER 705;A 1070 PRINT "Step Sweep has ";A;" Steps"

Figure 2-8. Output Command Programming Examples

2-10 STORED SETUP Table 2-10 lists the stored setup command mnemonic codes. These **COMMANDS** commands provide for saving instrument setups and recalling them for use. A current instrument setup can be saved to internal setup memory using the $SSN(M_{1 \text{ to } 9})$ command, where M = memory locations 1 to 9. Up to nine instrument setups can be stored in this manner. The command RSN(M_{1 to 9}) recalls a stored instrument setup from internal setup memory locations 1 to 9. If more than nine instrument setups are needed, or if it is desirable to store the setups in the controller instead of the CW generator memory, the 690XXB can be commanded to output and accept stored setups over the bus. The SAF command outputs the current instrument setup to the controller in a 4100-byte (approximately) binary data string. The controller stores the instrument setup. The RCF command readies the CW generator to receive a new instrument setup recalled from the controller. Figure 2-9 shows an example of SAF and RCF command programming. The SAM and RCM commands perform the same functions as described for the SAF and RCF commands, except that all of the stored instrument setups are included in the binary data string along with the current instrument setup. For these commands, the binary data string is approximately 41000 bytes long. Table 2-10. Stored Setup Commands

MNEMONIC CODE	FUNCTION	
SAF	Outputs the current instrument setup to the controller.	
SAM	Outputs both the current instrument setup and all stored instru- ment setups to the controller.	
SM	Recalls the next stored instrument setup in sequence.	
SSN(M19)	Saves the current instrument setup to internal setup memory location M, where $M = 1$ to 9.	
RCF	Readies the 690XXB to receive a new instrument setup re- called from the controller.	
RCM	Readies the 690XXB to receive a new instrument setup and new stored setups recalled from the controller.	
RSN(M19)	Recalls the instrument setup stored in internal setup memory location M, where $M = 1$ to 9.	

Programming Note: The SAF and SAM commands output binary data. The data string is terminated with "EOI" on the last byte sent (no CR or LF is sent).

10 DIM A\$ [300]
20 OUTPUT 705; "SAF"
30 ENTER 705 USING "#%, #%K"; A\$ (Requires EOI to be the terminator of the read.)
40 OUTPUT 705; "RCF"; A\$ (A\$ must follow the SAF.)

Figure 2-9. SAF and RCF Commands Programming Example

2-11	SRQ AND STATUS BYTE COMMANDS	Table 2-11 (page 2-32) lists the Service Request (SRQ) and Status Byte command mnemonic codes. These commands enable the CW generator to request service from the controller when certain, predefined conditions exist.		
		Status Bytes	The 690XXB has three GPIB status bytes—the pri- mary and two extended status bytes. Figure 2-10 shows the three status bytes and identifies the status reporting function of each status byte bit.	
			Each status reporting bit, with the exception of pri- mary status byte bit 6 (SRQ), is set when the condi- tion on which it reports is detected. These changes in status byte bit settings can be read by the con- troller as follows:	
			 The contents of the primary status byte is returned to the controller in response to a serial poll or the OSB command. The contents of the primary status byte and the two extended status bytes are returned to the controller in response to the OES command. Figure 2-11 (page 2-34) shows an example of OES command programming. 	
		SRQ Generation	The CW generator can generate GPIB service re- quests (SRQs) to report instrument status and syn- tax errors to the controller. The CW generator will generate an SRQ if:	
			 The SRQ generation function has been enabled using the SQ1 command <i>and</i>, One (or more) of the status reporting functions is true <i>and</i>, The primary status byte bit associated with the true status reporting function has been enabled. 	
			Bits in the primary status byte can be enabled by ei- ther of two methods. The first uses the FB1/FB0, ES1/ES0, UL1/UL0, LE1/LE0, PE1/PE0, SE1/SE0, and SB1/SB0 commands, described in Table 2-11, to individually enable or disable each bit. The second method uses a single 8-bit status byte mask (MB0) to enable any or all of the primary status byte bits.	
			Figure 2-12 (page 2-34) shows examples of status byte mask programming.	

NOTE

All status byte bits are latched except for those indicated with the "*". Once set, an OES or OSB command must be received before the condition will be reset. The primary status byte bit 6 (SRQ) is cleared by a serial poll only.

Primary Status Byte

Extended Status Byte 2	SRQ	Syntax Error	Parameter Range Error	Lock Error	RF Unleveled	End of Sweep	Extended Status Byte 1
<i>Bit 7</i> (128)	<i>Bit 6</i>	<i>Bit 5</i>	<i>Bit 4</i>	<i>Bit 3</i>	<i>Bit 2</i>	Bit 1	<i>Bit 0</i>
	(64)	(32)	(16)	(8)	(4)	(2)	(1)

Primary status byte bit 0 is set whenever one of the status conditions reported by an extended status byte 1 is true and the associated status bit is enabled. This bit is cleared when the controller sends the OES command.

Primary status byte bit 7 is set whenever one of the status conditions reported by an extended status byte 2 is true and the associated status bit is enabled. This bit is cleared when the controller sends the OES command.

Primary status byte bit 6 (SRQ) is not maskable. This bit is set by the SQ1 command and cleared by a serial poll.

Extended Status Byte 1

RF*	Not	Not	Not	RF*	Self Test	Not	Self Test
Leveled	Used	Used	Used	Locked	Completed	Used	Failed
<i>Bit 7</i> (128)	<i>Bit 6</i>	<i>Bit 5</i>	<i>Bit 4</i>	<i>Bit 3</i>	<i>Bit 2</i>	Bit 1	<i>Bit 0</i>
	(64)	(32)	(16)	(8)	(4)	(2)	(1)

Extended status byte 1 bits are enabled by the extended status byte 1 mask command, MB1.

Extended status byte 1 bit 0 (SelfTest Failed) and bit 2 (Self Test Complete) should not be unmasked at the same time.

Extended status byte 1 bit 3 (RF Locked) is only used with the Model 360B interface. The setting of this bit is blocked or unblocked by the commands, LS0 and LS1 (See Table 2-11).

The setting of extended status byte 1 bit 7 (RF Leveled) is blocked or unblocked by the commands LA0 and LA1 (See Table 2-11).

Extended Status Byte 2

Parameter* Changed	Calibrate Function Finished	Not Used	RF* Unlocked	Crystal Oven Failure	Calibrate Function Failed	Not Used	Not Used
<i>Bit 7</i> (128)	<i>Bit 6</i>	<i>Bit 5</i>	<i>Bit 4</i>	<i>Bit 3</i>	<i>Bit 2</i>	Bit 1	<i>Bit 0</i>
	(64)	(32)	(16)	(8)	(4)	(2)	(1)

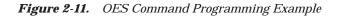
Extended status byte 2 bits are enabled by the extended status byte 2 mask command, MB2.

The setting of extended status byte 2 bit 4 (RF Unlocked) is blocked or unblocked by the commands, EL0 and EL1 (See Table 2-11).

Extended status byte 2 bit 7 (Parameter Changed) is only used with the Model 56100A interface. The setting of this bit is blocked or unblocked by the commands, II0 and II1 (See Table 2-11).

Figure 2-10. Primary and Extended Status Bytes

MNEMONIC CODE	FUNCTION
ES1	Enables an SRQ to be generated when Primary Status Byte bit 1 (End of Sweep) is set and SQ1 has been programmed.
ES0	Inhibits an SRQ from being generated when the End of Sweep bit is set. This is the default mode.
FB1	Enables an SRQ to be generated when Primary Status Byte bit 0 (Extended Status Byte 1) is set and SQ1 has been pro- grammed. The Extended Status Byte 1 bit is set whenever one (or more) of the unmasked status reporting functions in Extended Status Byte 1 is true.
FB0	Inhibits an SRQ from being generated when the Extended Status Byte 1 bit is set. This is the default mode.
LE1	Enables an SRQ to be generated when Primary Status Byte bit 3 (Lock Error) is set and SQ1 has been programmed.
LE0	Inhibits an SRQ from being generated when the Lock Error bit is set. This is the default mode.
MB0	Sets an 8-bit data mask that is used to enable specific bits of the Primary Status Byte (Figure 2-12). This enables any or all of the bits (except for bit 6) in the Primary Status Byte to gener- ate an SRQ using one 8-bit byte. This command can be equivalent to sending ES1, FB1, LE1, PE1, SE1, SB1, and UL1.
MB1	Sets the enable mask byte for Extended Status Byte 1.
MB2	Sets the enable mask byte for Extended Status Byte 2.
PE1	Enables an SRQ to be generated when Primary Status Byte bit 4 (Parameter Range Error) is set and SQ1 has been pro- grammed.
PE0	Inhibits an SRQ from being generated when the Parameter Range Error bit is set. This is the default mode.
SB1	Enables an SRQ to be generated when Primary Status Byte bi 7 (Extended Status Byte 2) is set and SQ1 has been pro- grammed. The Extended Status Byte 2 bit is set whenever one (or more) of the unmasked status reporting functions in Extended Status Byte 2 is true.
SB0	Inhibits an SRQ from being generated when the Extended Status Byte 2 bit is set. This is the default mode.
SE1	Enables an SRQ to be generated when Primary Status Byte bi 5 (Syntax Error) is set and SQ1 has been programmed.


Table 2-11. SRQ and Status Byte Commands (1 of 2)

BYTE COMMANDS

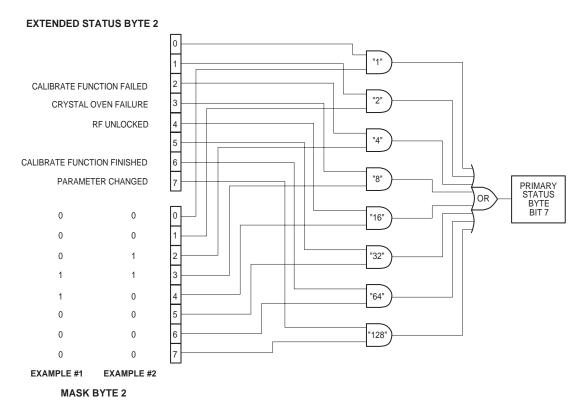

<i>Table z-11.</i>	SRQ and Status Byte Commands (2 of 2)
MNEMONIC CODE	FUNCTION
SE0	Inhibits an SRQ from being generated when the Syntax Error bit is set. This is the default mode.
SQ1	Enables the SRQ generation function. This command allows a status reporting function, that is true and enabled, to pull the SRQ line LOW (true) and request service from the controller.
SQ0	Disables the SRQ generation function. This is the default mode.
UL1	Enables an SRQ to be generated when Primary Status Byte bit 2 (RF Unleveled) is set and SQ1 has been programmed.
ULO	Inhibits an SRQ from being generated when the RF Unleveled bit is set. This is the default mode.
LS1	Unblocks updating of the Extended Status Byte 1 bit 3 (RF Locked). This bit is only used with the Model 360B interface.
LSO	Disables updating of the Extended Status Byte 1 bit 3. This is the default setting.
LA1	Unblocks updating of the Extended Status Byte 1 bit 7 (RF Leveled).
LAO	Blocks updating of the Extended Status Byte 1 bit 7. This is the default setting.
EL1	Unblocks updating of the Extended Status Byte 2 bit 4 (RF Unlocked).
ELO	Blocks updating of the Extended Status Byte 2 bit 4. This is the default setting because it is normal for the RF to be momentar- ily unlocked during sweeps and sweep retrace.
1	Unblocks updating of the Extended Status Byte 2 bit 7 (Parameter Changed). This bit is only used with the Model 56100A interface. This bit is cleared when the 56100A sends the OCP command (Output Last Parameter Changed).
IIO	Disables updating of the Extended Status Byte2 bit 7. This is the default setting.
CSB	Clears all GPIB status bytes.

Table 2-11. SRQ and Status Byte Commands (2 of 2)

```
OUTPUT 705; "OES"
ENTER 705 USING "#, B"; A, B, C
MAIN = A
1 EXT = B
2 EXT = C
```


The 690XXB has a software mask that permits manipulation of the three status bytes over the bus. This manipulation is accomplished by sending the command codes MB0, MB1, MB2, or all three at once, followed by an argument that assigns an on/off condition for each bit in the byte. Two examples are shown below:

EXAMPLE #1: "MB2" (CHR \$(24))

Sets bits 3 and 4 in Mask Byte 2 to 1 and all other bits to 0, thus enabling bits 3 and 4 in Extended Status Byte 2 to be read from the bit 7 position of the Primary Status Byte.

EXAMPLE #2: "MB2" (CHR \$(12))

Sets bits 2 and 3 in Mask Byte 2 to 1 and all other bits to 0, thus enabling bits 2 and 3 in Extended Status Byte 2 to be read from the bit 7 position of the Primary Status Byte.

2-12 CONFIGURATION COMMANDS

Table 2-12 lists the configuration command mnemonic codes. These commands permit selection/setting of the following system configuration items via the bus:

- □ A +5V or -5V level for the rear panel retrace and bandswitch blanking outputs.
- □ Setting the frequency scaling reference multiplier value.
- Normally-open or normally-closed contacts on the internal penlift relay.
- □ RF on or RF off during frequency switching in CW, step sweep, and list sweep modes.
- **□** RF on or RF off during sweep retrace.
- □ RF on or RF off at reset.
- □ 40 dB or 0 dB of attenuation when RF is switched off in units with a step attenuator (Option 2).

The system configuration selections made with GPIB commands remain in effect when the instrument is returned to local control.

MNEMONIC CODE	FUNCTION
BPN	Selects a –5V level for the retrace and bandswitch blanking outputs. (The retrace blanking output signal is available at pin 6 of the AUX I/O connector; the bandswitch blanking output signal at pin 20 of the AUX I/O connector.)
BPP	Selects a +5V level for the retrace and bandswitch blanking outputs.
FRS	Permits setting the frequency scaling reference multiplier value. The multiplier value must be between 0.1 and 14 and must be terminated with TMS. <i>Programming Example:</i> Programming "FRS 3 TMS " sets the frequency scaling refer- ence multiplier to 3. This command affects all entered and displayed frequencies, but does not affect the output of the instrument.
PPO	Selects normally-open contacts on the internal penlift relay. (The penlift relay output, optionally available at the rear panel, is used to lift a plotter pen during retrace.)
PPC	Selects normally-closed contacts on the internal penlift relay.
RC0	Selects RF to be off during frequency switching in CW, step sweep, and list sweep modes.
RC1	Selects RF to be on during frequency switching in CW, step sweep, and list sweep modes.

MNEMONIC CODE	FUNCTION
RT0	Selects RF to be off during retrace.
RT1	Selects RF to be on during retrace.
RO0	Selects RF to be on at reset. (This is the default mode.)
RO1	Selects RF to be off at reset.
TRO	Sets 0 dB of attenuation when RF is switched off in units with a step attenuator (Option 2) installed. If Option 2 is not installed, this command produces a syntax error.
TR1	Sets 40 dB (minimum) of attenuation when RF is switched off in units with a step attenuator (Option 2) installed. Thsi pro- vides a better output source match. If Option 2 is not installed, this command produces a syntax error.

 Table 2-12.
 Configuration Commands (2 of 2)

2-13 GROUP EXECUTE TRIGGER COMMANDS

Table 2-13 lists the group execute trigger (GET) command mnemonic codes. These commands let a GET bus message (Table 1-3) be used to trigger certain CW generator functions and thus speed up bus operations.

In the default state, the 690XXB responds to a GET message by triggering a single sweep.

MNEMONIC CODE	FUNCTION
GTC	Configures the 690XXB to execute an SQF command (scan to the next higher preset CW frequency) each time a GET message is received.
GTD	Configures the 690XXB to execute a DN command (steps the open parameter down by the step size) each time a GET message is received.
GTF	Configures the 690XXB to execute a fast-frequency-switching step (Table 2-15) each time a GET message is received.
GTL	Configures the 690XXB to execute a TSS command (steps to the next point in a dual step sweep mode) each time a GET message is received.
GTO	Disables the GET functions.
GTS	Configures the 690XXB to execute a TRS command (trigger a single sweep) each time a GET message is received. This is the default mode.
GTT	Configures the 690XXB to execute a TST command (execute a complete CW generator self test) each time a GET message is received.
GTU	Configures the 690XXB to execute a UP command (steps the open parameter up by the step size) each time a GET message is received.
Y	Sending a "Y" is equivalent to sending a GET.

Table 2-13. Group Execute Trigger Commands

2-14 LIST SWEEP COMMANDS

Table 2-14 lists the list sweep command mnemonic codes. These commands provide for (1) placing the CW generator in list sweep mode, (2) accessing up to four lists of 2000 frequency/power level sets, and (3) generating a phase-locked step sweep of the list frequency/power level sets.

In list sweep mode, up to four lists of 2000 non-sequenctial frequency/ power level sets can be stored and accessed. A list index (0 thru 1999) identifies each frequency/power level set in a list. When commanded, the CW generator generates a phase-locked step sweep between the specified list start index and list stop index.

Accessing and Editing a List

The command, LST, places the CW generator in list sweep mode. The ELN(x) command is used to select which of the four lists is to be accessed. The first list (list number 0) is the same list that is available via local (front panel) control. This list is stored in nonvolatile RAM to perserve any settings after the instrument is powered off. The other three lists (list numbers 1, 2, and 3) are all stored in volatile RAM and all settings are lost when power to the CW generator is turned off. At power up, list numbers 1, 2, and 3 are set to their default state of 2000 index entries of 5 GHz at 0 dBm.

The ELI(xxxx) command sets the list index for the current list. Use the LF command to set the list frequencies starting at the list index and the LP command to set the list power levels starting at the list index. Any number of frequencies and power levels can follow these commands.

Another method of entering frequency and power level information into the current list index is to use the command, CTL, which copies the current CW frequency and power level to the current list index.

Programming Example:

Programming "LST ELN1 ELI1234 LF 2 GH, 5 GH, 1 GH, 8 GH LP 2 DM, 9 DM, -3 DM, -10 DM" places the CW generator in list sweep mode, selects list number 1, and sets the list index to 1234. List index 1234 is set to 2 GHz at 2 dBm, list index 1235 is set to 5 GHz at 9 dBm, list index 1236 is set to 1 GHz at -3 dBm, and list index 1237 is set to 8 GHz at -10 dBm

	1
MNEMONIC CODE	FUNCTION
LST	Places the 690XXB in List Sweep mode.
ELI(xxxx)	Sets list index to xxxx, where xxxx = 4-digit integer between 0000 and 1999.
ELN(x)	Sets list number to x, where $x = 1$ -digit integer between 0 and 3.
LF	Sets list frequencies starting at the list index. Any number of frequencies can follow. This command does <i>not</i> change the value of the list index.
LP	Sets list power levels starting at the list index. Any number of power levels can follow. This command does <i>not</i> change the value of the list index.
LIB(xxxx)	Sets the list start index to xxxx, where xxxx = 4-digit integer between 0000 and 1999.
LIE(xxxx)	Sets the list stop index to xxxx, where xxxx = 4-digit integer between 0000 and 1999.
AUT	Selects Auto Trigger
HWT	Selects External Trigger
EXT	Selects Single Trigger
TRG	Triggers a Single Sweep (only in Single Trigger mode)
MNT	Selects Manual Trigger
UP	Increases list index by one (only in Manual Trigger mode)
DN	Decreases list index by one (only in Manual Trigger mode)
LEA	Learn List (This command initiates a process that examines every index in the list and performs all calculations necessary to set the frequency and power levels.)
CTL	Copy current CW frequency and power level to the current list index.

 Table 2-14.
 List Sweep Commands

List Sweep Triggering	Four different modes of triggering are available in list sweep mode—automatic, external, single, and manual. When automatic, external, or single trigger mode is selected, the output sweeps between the specified list start and stop indexes, dwelling at each list index for the specified dwell time. When manual trigger mode is selected, the list start index, list stop index, and dwell time parameter are not used. Instead, the list index is incremented using the UP command or an external TTL trigger and is decremented using the DN command. The AUT command selects automatic sweep trigger-
	ing and the HWT command selects automatic sweep trigger triggering. When external sweep trigger mode is se- lected, the output sweep recurs when triggered by an external TTL-compatible clock pulse to the rear panel AUX I/O connector. The EXT command selects single list sweep triggering. When single sweep trig- ger mode is selected, a single list sweep starts when the TRG command is received.
	The MNT command selects the manual trigger mode. In manual trigger mode, the list index is in- cremented by one each time the UP command is re- ceived or each time an external TTL trigger is received. The list index is decremented by one each time the DN command is received.
<i>Generating a List Sweep</i>	Generating a list sweep involves selecting a sweep range, a dwell-time-per-step, and a sweep trigger. The sweep range is defined by a list start index and a list stop index. Use the LIB(xxxx) command to set the list start index and the LIE(xxxx) command to set the list stop index. The dwell-time-per-step of the list sweep is changed using the LDT parameter entry command. Select a trigger for the list sweep using the list sweep trigger commands perviously described.
	Programming Example: Programming "LIB1234 LIE1237 EXT LDT 10 MS TRG" implements a list sweep from the current list index 1234 to index 1237 in single trigger mode with a 10 ms dwell-time-per-step, then triggers a single sweep.

List Calculations

During the initial sweep, the CW generator performs calculations to set the frequency and power levels. This causes the initial list sweep to take longer than each subsequent sweep. The command, LEA, initiates a process that examines every index in the current list and performs all the calculations necessary to set the frequency and power levels. This lets the initial list sweep be as fast as each subsequent sweep.

The list calculations are for the current list only. Any changes to the current list or selection of another list requires the calculations to be performed again. The calculations are stored only in volatile RAM and are lost when power to the CW generator is turned off. **2-15** FAST-FREQUENCY-SWITCHING COMMANDS

Table 2-15 lists the fast-frequency-switching command mnemonic codes. These commands provide for reducing the time that it takes to switch between CW frequencies.

In the fast-frequency-switching mode, up to 3202 frequencies can be loaded into a table. A table pointer can then be set to point to a specific frequency in the table and the CW generator commanded to switch from that frequency through the following frequencies to the bottom of the table.

Loading the
FrequencyTo load the frequency table, use the command
ZTLbbbbnnnD8D8D8.....D8, where "bbbb" is the ta-
ble location where the frequency points are to start
loading, "nnnn" is the number of frequency points to
be loaded, and "D8" is the frequency of the frequency
point. Both "bbbb" and "nnnn" are 4 binary byte in-
tegers and "D8" is 8 binary bytes of an IEEE-754
double precision floating point number. The order of
the bytes in each field is most significant byte first.

NOTE

Use of the commands $ZL(X_{000-999})$, ZEL, and $ZS(X_{000-999})$ limits the number of frequency points in the table to 1000.

Figures 2-13 thru 2-13b show an example of fast-frequency-switching mode programming.

Table 2-15. Fast-Frequency-Switching Commands

MNEMONIC CODE	FUNCTION
ZPN	Sets the table pointer (ZPNbbbb), where bbbb is the location the pointer is to point to.
ZTL	Loads the frequency table (ZTLbbbbnnnnD8D8D8D8), where bbbb is the table location where the frequency points are to start loading, nnnn is the number of frequencies to be loaded, and D8 is the frequency of the frequency point.
ZL(X ₀₀₀₋₉₉₉)	Loads a CW frequency into the stack at location X. The loca- tion is a number from 000 to 999.
ZEL	Ends frequency loading.
ZS(X ₀₀₀₋₉₉₉)	Sets the stack pointer to point to location X. The location is a number from 000 to 999.

FAST-FREQUENCY-SWITCHING COMMANDS

The following is an example of fast-frequency-switching mode programming. This is a IBM-PC based program using the National Instruments NI-488.2 C language interface library (mcib.lib) and header (decl.h).

```
#include <stdio.h>
#include "decl.h"
#define BOARD ID
                        0
void main()
{
Addr4882 t
               source_addr = 5,
               device_addr[2] = {5, NOADDR};
double
               freq_list[2] = {600e6, 8e9},
               *double_ptr;
int
               start index,
               num_freqs = 2,
               *integer_ptr;
char
               command str[50];
/** Clear the bus and take control.
**/
SendIFC(BOARD_ID);
if (ibsta & ERR)
    ł
    exit (-1);
    }
/** Set the remote enable line.
**/
EnableRemote(BOARD_ID, device_addr);
if (ibsta & ERR)
    {
    exit (-1);
    }
/** Set the start index to an arbitrary starting point.
**/
start_index = 12;
/** Begin constructing the command.
**/
command_str[0] = 'Z';
                                                     /** Start with the ZTL command. **/
command str[1] = 'T';
command_str[2] = 'L';
integer ptr = &start index;
                                                     /** Point to the start index. **/
command_str[3] = (char)(*(integer_ptr + 3));
                                                     /** Get the value of the fourth byte. **/
                                                     /** Data is LSB first on Intel based PCs. **/
command_str[4] = (char)(*(integer_ptr + 2));
                                                     /** Get the value of the third byte. **/
                                                     /** Get the value of the second byte. **/
command_str[5] = (char)(*(integer_ptr + 1));
command_str[6] = (char)(*integer_ptr);
                                                     /** Get the value of the first byte. **/
```

NOTE: This program is continued in Figure 2-13a.

Figure 2-13. Fast-Frequency-Switching Programming Example (1 of 3)

FAST-FREQUENCY-SWITCHING COMMANDS

```
integer_ptr = &num_freqs;
                                                     /** Point to the number of frequencies. **/
                                                     /** Get the value of the fourth byte. **/
command_str[7] = (char)(*(integer_ptr + 3));
command_str[8] = (char)(*(integer_ptr + 2));
                                                     /** Get the value of the third byte. **/
command_str[9] = (char)(*(integer_ptr + 1));
                                                     /** Get the value of the second byte. **/
                                                     /** Get the value of the first byte. **/
command_str[10] = (char)(*integer_ptr);
                                                     /** Point to the first frequency. **/
double_ptr = &(freq_list[0])
command_str[11] = (char)(*(double_ptr + 7));
                                                     /** Get the value of byte 7. **/
                                                     /** Data is LSB first on Intel based PCs. **/
command_str[12] = (char)(*(double_ptr + 6));
                                                     /** Byte 6. **/
                                                     /** Byte 5. **/
command_str[13] = (char)(*(double_ptr + 5));
command_str[14] = (char)(*(double_ptr + 4));
                                                     /** Byte 4. **/
                                                     /** Byte 3. **/
command_str[15] = (char)(*(double_ptr + 3));
                                                     /** Byte 2. **/
command str[16] = (char)(*(double ptr + 2));
command_str[17] = (char)(*(double_ptr + 1));
                                                     /** Byte 1. **/
command_str[18] = (char)(*double_ptr );
                                                     /** Byte 0. **/
                                                     /** Point to the second frequency. **/
double_ptr = &(freq_list[1])
command_str[19] = (char)(*(double_ptr + 7));
                                                     /** Get the value of byte 7. **/
command_str[20] = (char)(*(double_ptr + 6));
                                                     /** Byte 6. **/
command_str[21] = (char)(*(double_ptr + 5));
                                                     /** Byte 5. **/
command str[22] = (char)(*(double ptr + 4));
                                                     /** Byte 4. **/
command_str[23] = (char)(*(double_ptr + 3));
                                                     /** Byte 3. **/
command_str[24] = (char)(*(double_ptr + 2));
                                                     /** Byte 2. **/
command_str[25] = (char)(*(double_ptr + 1));
                                                     /** Byte 1. **/
command_str[26] = (char)(*double_ptr );
                                                     /** Byte 0. **/
/** Send the command.
**/
Send(BOARD_ID, source_addr, command_str, 27, DABend);
if (ibsta & ERR)
    exit (-1);
    }
/** Set the pointer back to the start index.
**/
command_str[0] = 'Z';
                                                     /** ZPN command. **/
command str[1] = 'P';
command_str[2] = 'N';
integer_ptr = &start_index;
                                                     /** Point to the start index. **/
                                                     /** Get the value of the fourth byte. **/
command_str[3] = (char)(*(integer_ptr + 3));
command str[4] = (char)(*(integer ptr + 2));
                                                     /** Get the value of the third byte. **/
command_str[5] = (char)(*(integer_ptr + 1));
                                                     /** Get the value of the second byte. **/
                                                     /** Get the value of the first byte. **/
command_str[6] = (char)(*integer_ptr);
/** Send the command.
**/
Send(BOARD_ID, source_addr, command_str, 7, DABend);
if (ibsta & ERR)
    {
    exit (-1);
    }
```

NOTE: This program is continued in Figure 2-13b.

Figure 2-13a. Fast-Frequency-Switching Programming Example (2 of 3)

```
/** Send a trigger.
**/
Trigger(BOARD_ID, source_addr);
if (ibsta & ERR)
    {
    exit (-1);
    }
/** Source is now outputting 600 MHz. **/
/** Send a trigger.
**/
Trigger(BOARD_ID, source_addr);
if (ibsta & ERR)
    {
    exit (-1);
    }
/** Source is now outputting 8 GHz. **/
exit(0);
} /** End of main **/
```

Figure 2-13b. Fast-Frequency-Switching Programming Example (3 of 3)

2-16 POWER-OFFSET-TABLE COMMANDS

Table 2-16 lists the power-offset-table command mnemonic codes. These commands provide for maintaining a consistent power level at a point within a test setup across the measurement frequencies. This "flattening" of the test point power level is accomplished by summing a power offset word (from the power offset table) with the CW generator's normal power level DAC word at each frequency point.

The power-offset mode works in conjunction with the fast-frequencyswitching mode (para. 2-15). The frequency stack must be loaded before loading the power-offset table because the frequency loading sets the upper limit for the number of entries in the power-offset table. The same pointer is used for both the frequency stack and the power-offset table. Once the power-offset table is loaded, the PT1 command turns on the power-offset mode; the PT0 command turns it off.

Loading the Power-Offset Table

To load the power-offset table, use the command, PTL clch dldh...., where "clch" is the number of power-offset words and "dldh" is a power-offset word. Both "clch" and "dldh" are two-byte binary words sent LOW byte first and HIGH byte second. The power-offset word is in hundreths of a dB. Negative power offsets use 2's complement representation.

To change a power-offset word in the table, use the PTC dldh command, where "dldh" is the new poweroffset word for the current power level setting.

Programming Note:

Care must be taken to send the exact number of power-offset words specified in the wordcount, "clch". If to few words are sent, the GPIB interface may not respond properly.

Figures 2-14 and 2-14a show an example of power-offset mode programming.

MNEMONIC CODE	FUNCTION
PT0	Disable the Power Offset Table
PT1	Enable the Power Offset Table
PTC	Change a Power Offset Table entry (PTC dldh), where dldh is the new offset word for the current table entry.
PTL	Load a Power Offset Table (PTL clch dldh), where clch is the data word count and dldh is the data word.

Table 2-16. Power-Offset-Table Commands

The following is an example of power-offset mode programming. This program is written for use with an IBM-PC type computer/controller containing an IOtech GPIB interface.

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
/* IOtech Driver488/LIB Subroutine Interface definitions... */
#include "\ieee488\iotlib.h"
#include "\ieee488\iot main.h"
/* Define the device handles */
DevHandleT Synth, ieee;
void main()
ł
 char CmdString[10], DataString[40], String[40];
 unsigned char XString[160];
 int next_step,i,j;
 /* Initialize the IOtech interface board and */
 /* obtain the interface's handle.
                                        */
 #define ADDRESS 5
 if((ieee=InitIeee488(btMP488CT, 21, -1, 0x02el, 7, 5, 1, 10000,0))==-1)
    printf("Cannot initialize IEEE 488 system.\n")
    exit(1);
    }
 if(( Synth=CreateDevice( ADDRESS, -1 ) )==-1)
    printf("Cannot create Synth device.\n");
    exit(1);
 /* Set the device timeout so you don't wait forever if there's a problem */
 TimeOut(Synth, 2000);
 /* Handle the errors in the program */
 Error(Synth,OFF);
 /* Address the Synthesizer to listen */
```

```
NOTE: This program is continued in Figure 2-14a.
```

```
Figure 2-14. Power-Offset Mode Programming Example (1 of 2)
```

```
strcpy(XString, " ?U%");
  SendCmd(Synth, XString, strlen(XString));
  Output(Synth, "RST");
  Output(Synth, "GTF");
  Output(Synth, "ZL000");
  Output(Synth,"1 GH 2 GH 3 GH 4 GH 5 GH 6 GH 7 GH 8 GH 9 GH 10 GH");
  Output(Synth, "ZEL");
  /* Make a data array with the PTL command, the word count */
  /* and the binary data in low-byte, high-byte order.
                                                              */
  DataString[0]='P';
  DataString[1]='T';
  DataString[2]='L';
  DataString[3]=10;
                          /* Low byte -- ten words */
  DataString[4]=0;
                          /* High byte --
                                                       */
  DataString[5]=0;
                          /* 0 */
  DataString[6]=0;
                          /* 276 */
  DataString[7]=20;
  DataString[8]=1;
                          /* 542 */
  DataString[9]=30;
  DataString[10]=2;
                          /* 808 */
  DataString[11]=40;
  DataString[12]=3;
                          /* 1074 */
  DataString[13]=50;
  DataString[14]=4;
  DataString[15]=60;
                          /* 1340 */
  DataString[16]=5;
                          /* 1606 */
  DataString[17]=70;
  DataString[18]=6;
                          /* 1872 */
  DataString[19]=80;
  DataString[20]=7;
                          /* 2138 */
  DataString[21]=90;
  DataString[22]=8;
                          /* 2404 */
  DataString[23]=100;
  DataString[24]=9;
  /* Send the data with an EOI on the last byte */
  SendEoi(Synth,DataString,25);
  Output(Synth, "PT1");
  Output(Synth, "ZS000");
  for(next_step=0;next_step<10;next_step++)</pre>
    {
      Output(Synth, "Y");
      printf("Press Enter for Next Frequency");
      getchar();
    }
} /* End of main() */
```

Figure 2-14a. Power-Offset Mode Programming Example (2 of 2)

2-17 USER LEVEL CALIBRATION COMMANDS

Table 2-17 lists the user level calibration commands. These commands provide for (1) activating individual user level calibration tables, (2) sending the tables to the controller, and (3) recalling the tables from the controller.

The user level (flatness correction) calibration function provides for calibrating out path variations in a test setup. This is accomplished by means of an entered power-offset table from a GPIB power meter or calculated data. When the user level calibration table is activated, the set power level is delivered to the point in the test setup where the calibration was performed. Up to five user level calibration tables from 2 to 801 frequency points/table can be created and stored in 690XXB memory for recall. (Refer to "Leveling Operations" in Chapter 3 of the 690XXB Operation Manual for user level calibration procedures.)

The commands, LU1 thru LU5, each activate an individual user level calibration table (#1 thru #5). The LU0 command turns off the active user level calibration table. The LUS command sends all five tables of user level calibration data to the controller where they are stored in a binary data file. While stored in the file, the data can be edited (see page 2-52). The LUR command readies the 690XXB to receive the five tables of user level calibration data from the controller. Figures 2-15 thru 2-15b show an example program for saving and recalling user level calibration tables.

MNEMONIC CODE	FUNCTION
LU0	Turns off the active user level calibration table.
LU1	Activates user level calibration table #1. Turns off any other active user level calibration table.
LU2	Activates user level calibration table #2. Turns off any other active user level calibration table.
LU3	Activates user level calibration table #3. Turns off any other active user level calibration table.
LU4	Activates user level calibration table #4. Turns off any other active user level calibration table.
LU5	Activates user level calibration table #5. Turns off any other active user level calibration table.
LUR	Readies the 690XXB to receive five tables of user level calibration data from the controller.
LUS	Sends all five tables of user level calibration data to the controller.

Table 2-17. User Level Calibration Commands

The following is an example program for saving and recalling user level calibration tables. This program uses the National Instruments NI-288.2 C language interface library (mcib.lib) and header (decl.h).

```
#include <stdio.h>
#include "decl.h"
void gpiberr(char *);
#define BOARD ID
                         0
#define USER LVL SAVE
                             1
#define USER LVL RECALL
                             2
#define USER LVL NUM BYTES 8232
void main()
{
Addr4882_t
               source addr = 5
               device_addr[2] = {5, NOADDR};
unsigned char user lvl tables[USER LVL NUM BYTES];
init
               user lvl received,
              user_input;
FILE
               *fp user lvl data:
/** Clear the bus and take control.
 **/
SendIFC(BOARD_ID);
if(ibsta & ERR)
     gpiberr("SendIFC error");
/** Set the remote enable line.
 **/
EnableRemote(BOARD ID, device addr);
if(ibsta & ERR)
     gpiberr("EnableRemote error");
/** Prompt the user to save or recall the data.
 **/
printf("1. Save the data from the source\n");
printf("2. Recall the data to the source\n");
printf("Option: ");
scanf("%d",&user input);
if (user input == USER LVL SAVE)
     {
```

NOTE: This program is continued in Figure 2-15a.

Figure 2-15. Programming Example of Saving and Recalling User Level Calibration Tables (1 of 3)

```
/** The LUS command tells the source to send the user level
       ** table data over the bus.
      **/
     Send(BOARD_ID, source_addr, "LUS\r\n", 5L, DABend);
     if(ibsta & ERR)
          gpiberr("Send error");
     /** Receive the user level table data.
      **/
     printf("Receiving data from the source\n");
     Receive(BOARD_ID, source_addr, user_lvl_tables,
              (long)USER LVL NUM BYTES, STOPend);
     if(ibsta & ERR)
          gpiberr("Receive error");
     user lvl received = ibcntl;
     printf("Received %d bytes of user level data\n",
              user_lvl_received);
     /** Open binary data file and output the data.
      **/
     if((fp user lvl data = fopen("userlvl.dat","w+b")) == NULL)
          Ł
          printf("Can't open the userlvl.dat data file\n");
          }
     else
          Ł
          printf("Outputting to userlvl.dat in the current
                    directory\n");
          fwrite(user lvl tables, sizeof(user lvl tables[0]),
                   USER_LVL_NUM_BYTES, fp_user_lvl_data);
          }
     }
else
     /** Open the binary data file and read the data.
      **/
     if((fp user lvl data = fopen("userlvl.dat", "rb")) == NULL)
          ł
          printf("Can't open the userlvl.dat data file\n");
          }
     else
          printf("Inputting from userlvl.dat in the current
                    directory\n");
          fread(user_lvl_tables, sizeof(user_lvl_tables[0]),
                  USER LVL NUM BYTES, fp user lvl data);
          }
```

NOTE: This program is continued in Figure 2-15b.

Figure 2-15a. Programming Example of Saving and Recalling User Level Calibration Tables (2 of 3)

```
/** The LUR command readies the source to receive the user
      ** level table data. Notice that there is no carriage
      ** return, line feed, or EOI sent with the LUR command.
     **/
    Send(BOARD_ID, source_addr, "LUR", 3L, NULLend);
    if(ibsta & ERR)
         gpiberr("Send error; LUR");
    /** The data is sent to the source immediately following the
      ** LUR command.
     **/
    printf("Sending %d bytes of data to the source\n",
            USER_LVL_NUM_BYTES);
    Send(BOARD_ID, source_addr, user_lvl_tables,
         (long)USER LVL NUM BYTES, DABend);
    if(ibsta & ERR)
         gpiberr("Send error; data");
    }
fclose(fp_user_lvl_data);
exit(0);
}/** end of main **/
***Name: gpiberr
**Desc: Display error code and message for all GPIB operation
**Receives: errsta - the error string to display
**Returns: nothing
**/
void gpiberr(char *errstr)
Ł
printf("\n%s\nError code = %d\n",errstr,iberr);
}/** end of gpiberr **/
```

Figure 2-15b. Programming Example of Saving and Recalling User Level Calibration Tables (3 of 3)

Editing the Table Data

While stored in the binary data file of the controller, the data of the five user level calibration tables can be edited. An editor that can display the data file in hexadecimal will be needed to perform the edit.

Types of Data Storage Methods

There are three types of data storage methods used for user level calibration data. Each is described in the following paragraphs. (The data item descriptions will refer back to these data types.)

Double:

8 bytes. Most significant byte first. ANSI/IEEE-754 64-bit floating point format.

 $|S| \longleftarrow E \longrightarrow | \longleftarrow F \longrightarrow |$ where: S (1 bit) = sign bit, 0 positive, 1 negativeE (11 bits) = exponent, biased by 1023 base 10 $F (52 \text{ bits}) = \text{fraction, 0} \le F < 1$

value = [(-1) raised to the S power] × [2 raised to the (E – 1023) power] × [1 + F]

Example:

801 is stored as 40 89 08 00 00 00 00 00 00, base 16. S = 0

E = 408 base 16 = 1032 base 10

F = .908 base 16 = .564453125 base 10 801 = $1 \times 512 \times 1.564453125$

Integer:

4 bytes. Most significant byte first. Stored as a signed integer. The sign bit is the most significant bit. Negative numbers are stored in 2's complement form.

Example:

7025 is stored as 00 00 1B 71, base 16.

-7025 is stored as FF FF D4 8F, base 16 2's complement.

Short:

2 bytes. Most significant byte first. Stored as a signed short. The sign bit is the most significant bit. Negative numbers are stored in 2's complement form.

Example:

350 is stored as 01 5E, base 16. -350 is stored as FE A2, base 16.

Data Item Descriptions

Each data item contained in the binary data file is described below with the following information:

- Data name
- □ Description
- □ Type of data storage
- Offset into the data file for each user level calibration table
- Data units

Figure 2-16 (page 2-55) shows a printout of a section of the data file that contains each of these data items for user level calibration table #2.

Name: Start Frequency

Description: The starting frequency for each user level calibration. Type: Double

Offsets (base 16): Table #1 0006 Table #2 0674 Table #3 0CE2 Table #4 1350 Table #5 19BE

Units: mHz (millihertz)

Name: Stop Frequency

Description: The ending frequency for each user level calibration. Type: Double Offsets (base 16): Table #1 000E Table #2 067C Table #3 0CEA Table #4 1358 Table #5 19C6

Units: mHz (millihertz)

Name: Frequency Increment

Description: The frequency increment for 1 point. This value = (stop frequency – start frequency) divided by the number of points. Type: Double Offset (base 16): Table #1 0016 Table #2 0684 Table #3 0CF2 Table #4 1360 Table #5 19CE Units: mHz (millihertz)

Name: Number of Points

Description: The number of frequency points. Type: Double

Offsets (base 16): Table #1 001E Table #2 068C Table #3 OCFA Table #4 1368 Table #5 19D6

Units: a value of 1 = 1 point

Name: Level Correction Offset

Description: This is the power level that is added to the front panel power before the level correction point table power levels are subtracted. It represents the maximum power deviations read during the calibration.

Type: Integer

Offsets (base 16): Table #1 0026 Table #2 0694 Table #3 **0D02** Table #4 1370 Table #5 19DE Units: mdB (milli-dB)

Name: Level Correction Point Table Description: These are the power level correction

values with respect to the maximum power deviation read during the calibration.

Type: Short (Array of 801 Points)

Offsets (base 16): Table #1 002A Table #2 0698 Table #3 **0D06** Table #4 1374 Table #5 19E2

Units: mdB (milli-dB)

000640	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000650	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
000660	00	00	00	00	00	00	00	00	00	00	00	00	00	00	BA	BE	
000670	00	00	DA	BE	42	7 D	1A	94	A2	00	00	00	42	A2	30	9C	
000680	Е5	40	00	00	42	6 D	1A	94	A2	00	00	00	40	22	00	00	
000690	00	00	00	00	00	00	17	83	FF	11	FF	56	FF	56	FF	74	
0006A0	FF	93	FF	9 C	FF	F6	00	00	FF	C 4	D1	21	E8	37	00	00	
0006B0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0006C0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	
0006D0	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	00	

Printout Explanation

The printout shows a section of the user level calibration data file, in hexadecimal, that contains each of the data items for user level calibration table #2. The offset into the data file is shown at the left in the printout.

Offset 0674: Start Frequency 42 7D 1A 94 A2 00 00 00 = 2 GHz Offset 067C: Stop Frequency 42 A2 30 9C E5 40 00 00 = 10 GHz Offset 0684: Frequency Increment 42 6D 1A 94 A2 00 00 00 = 1 GHz Offset 068C: Number of Points **40 22 00 00 00 00 00 00 =** 9 points Offset 0694: Level Correction Offset **00 00 17 83** = 6.016 dB Offset 0698: Level Correction Point Table (9 points) **FF** 11 = -.239 dB **FF 56** = -.170 dB **FF 56** = -.170 dB **FF** 74 = -.140 dB **FF** 93 = -.109 dB **FF** 9C = -.100 dB **FF F6** = -.010 dB **00 00** = 0 dB **FF C4** = -.060 dB

Figure 2-16. Printout of a Section of the User Level Calibration Binary Data File

2-18 MASTER-SLAVE OPERATION COMMANDS

Table 2-18 lists the master-slave operation command mnemonic codes. These commands provide for enabling two instruments (69XXXA/B and/or 68XXXB/C) that are connected in a master-slave configuration to produce CW and synchronized, swept output signals at a frequency offset.

In a master-slave configuration, one instrument (the Master) controls the other (the Slave) via interface cables between their rear panel AUX I/O and SERIAL I/O connectors. The two units are phase-locked together by connecting them to the same 10 MHz reference time base. (Refer to the 690XXB Operation Manual, Chapter 7—Use With Other Instruments, for master-slave interconnection and operating instructions.)

The parameter entry commands, SLF0 - SLF9 and SLM0 - SLM9, are used to set the F0 - F9 and M0 - M9 frequencies for the Slave unit; the SLDF parameter entry command is used to set the Δ F parameter for the Slave unit. The main output power level (L1) for the Slave unit is set using the SLV or SLL1 parameter entry command; the alternate sweep power level (L2) for the Slave unit is set using the SLL2 parameter entry command. The S1 command turns on the master-slave mode of operation; the S0 command turns off the Master-Slave mode of operation.

Programming Example:

Programming ***SLF1 5 GH SLF2 8 GH SLL1 3 DM S1**" sets the Slave unit F1 frequency to 5 GHz, its F2 frequency to 8 GHz, and its output power level to 3 dBm and turns on the master-slave mode of operation. Now, when the Master unit is programmed to perform a F1 to F2 sweep, the Slave unit will produce a synchronous 5 GHz to 8 GHz frequency sweep that has an output power level of 3 dBm.

Programming Note:

Use the SOF parameter entry command *only* to set the frequency offset for a Slave unit that is (1) slave to a Master unit that is connected to a 360B VNA in a source or dual-source configuration or (2) slave to a Master unit that is programmed to perform non-sequential frequency step sweeps (refer to Special Step Sweep on page 2-19).

Table 2-18. Master-Slave Operation Commands

MNEMONIC CODE	FUNCTION
S0	Turns off the Master-Slave mode of operation.
S1	Turns on the Master-Slave mode of operation.

2-19	SELF TEST COMMAND	Table 2-19 lists the self test command mnemonic code. This command provides for executing a CW generator self test.
		When a TST command is received, the CW generator performs a self test, then places a "P" (for pass) or a "F" (for fail) on the bus. It also generates six self test results bytes. Figure 2-18 (next page) shows the six self test results bytes and identifies the reporting function of each bit.
		When self test is completed, bit 7 of Self Test Results Byte 6 and bit 2 of Extended Status Byte 1 are both set. If a failure(s) occurs during self test, the Self Test Results Byte bit(s) reporting the failure(s) and bit 0 of Extended Status Byte 1 are set.
		The OSR command returns the six self test results bytes to the con- troller. Figure 2-17 provides an example of self test command pro- gramming.
		Programming Note: The "P or "F" character placed on the bus by the CW generator self test must be cleared from the output buffer (read by the controller) before another output command, such as OSR, is sent. If it is not cleared, the first character of the next output will be missing. Line 30 (Figure 2-17) shows clearing of the "P" or "F" character.

Table 2-19. Self Test Command

MNEMONIC CODE	FUNCTION
TST	Executes a CW generator self test. Extended Status Byte 1 bit 0 is set if self test fails; bit 2 is set when self test is complete.

```
10 OUTPUT 705; "CSB"
20 OUTPUT 705; "TST"
30 ENTER 705; D$
40 DISP D$
50 OUTPUT 705; "OSR"
60 ENTER 705 USING "#,B"; A, B, C, D, E, F
70 DISP A; B; C; D; E; F
80 END
```

Figure 2-17. Self Test Command Programming Example

Self Test Results Byte 1

Sweep Time Circuitry Failed	A18 Power Supply is Not Locked	Power Supply Voltage(s) are Out of Reg	A12 –10 Volt Reference Check Failed	A12 +10 Volt Reference Check Failed	DVM –10 Volt Reference Check Failed	DVM +10 Volt Reference Check Failed	DVM Ground Offset Check Failed
<i>Bit 7</i>	<i>Bit 6</i>	Bit 5	<i>Bit 4</i>	Bit 3	Bit 2	Bit 1	<i>Bit 0</i>
(128)	(64)	(32)	(16)	(8)	(4)	(2)	(1)

Self Test Results Byte 2

Not Locked	Down Converter	YIG Loop	Coarse Loop	Fine Loop	High Stability	Ext 10 MHz	Oven
Indicator	is	Circuitry is	Circuitry is	Circuitry is	Crystal is	is	is
Check Failed	Not Locked	Not Locked	Not Locked	Not Locked	Not Locked	Not Locked	Not Ready
<i>Bit 7</i> (128)	<i>Bit 6</i> (64)	<i>Bit 5</i> (32)	<i>Bit 4</i> (16)	<i>Bit 3</i> (8)	Bit 2 (4)	Bit 1 (2)	<i>Bit 0</i> (1)

Self Test Results Byte 3

Detector Log	Level Reference	Not Leveled	Not Used	Center	Marker Switch	Linearizer	FM Loop
Amp Circuitry	Circuitry	Detector		Frequency	Point	Circuitry	Gain
Failed	Failed	Circuitry Failed		Circuitry Failed	Circuitry Failed	Failed	Circuitry Failed
<i>Bit 7</i> (128)	<i>Bit 6</i> (64)	<i>Bit 5</i> (32)	<i>Bit 4</i> (16)	<i>Bit 3</i> (8)	<i>Bit 2</i> (4)	Bit 1 (2)	<i>Bit 0</i> (1)

Self Test Results Byte 4

3.3 - 5.5 GHz Switch Filter Section or Level Detector Circuitry Failed	2-3.3 GHz Switch Filter Section or Level Detector Circuitry Failed	Switch Filter or Level Detector Circuitry Failed	0.01 - 2 GHz Range Unleveled	A10 Q5 or Associated Circuitry Failed	2 - 8.4 GHz Range Unleveled and Not Locked	8.4 - 20 GHz Range Unleveled and Not Locked	2 - 20 GHz Range Unleveled and Not Locked
<i>Bit 7</i>	Bit 6	<i>Bit 5</i>	<i>Bit 4</i>	Bit 3	Bit 2	Bit 1	<i>Bit 0</i>
(128)	(64)	(32)	(16)	(8)	(4)	(2)	(1)

Self Test Results Byte 5

32 - 40 GHz	Switched	Not Used	Source	Modulator or	13.25 - 20 GHz	8.4 - 13.25 GHz	5.5 - 8.4 GHz
Section of	Doubler Module		Quadrupler	Driver Circuitry	Switch Filter	Switch Filter	Switch Filter
Switched	or Driver		Module	on A9-1 Failed	Section or	Section or	Section or
Doubler Module	Circuitry Failed		or Driver		Level Detector	Level Detector	Level Detector
Failed			Circuitry Failed		Circuitry Failed	Circuitry Failed	Circuitry Failed
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
(128)	(64)	(32)	(16)	(8)	(4)	(2)	(1)

Self Test Results Byte 6

Self Test is Complete	Not Used	Not Used	RF Was Off When Self Test Started	Slope DAC or Associated Circuitry Failed	Not Used	20 - 25 GHz Section of Switched Doubler Module Failed	25 - 32 GHz Section of Switched Doubler Module Failed
<i>Bit 7</i>	<i>Bit 6</i>	Bit 5	<i>Bit 4</i>	Bit 3	<i>Bit 2</i>	Bit 1	<i>Bit 0</i>
(128)	(64)	(32)	(16)	(8)	(4)	(2)	(1)

Figure 2-18. Self Test Results Bytes

2-20 MISCELLANEOUS COMMANDS

Table 2-20 is a list of miscellaneous command mnemonic codes that do not fit into any of the other classifications. These commands provide the following operations:

- **GPIB Address Change**
- □ CW Ramp
- □ Secure Mode
- □ Returning the 690XXB to local control
- Instrument Reset
- □ Serial Number Entry

Table 2-20. Miscellaneous Commands

MNEMONIC CODE	FUNCTION
ADD	Permits changing of the instrument GPIB address. The address must be between 1 and 30 and must be terminated with ADR. <i>Programming Example:</i> Programming "ADD 13 ADR" changes the instrument GPIB address to 13.
CS0	Turns off the CW ramp.
CS1	Turns on the CW ramp. This produces a repetitive 0V to 10V ramp output to the rear panel HORIZ OUT connector and pin 1 of the AUX I/O connector.
DS0	Turns on the secure mode. This blanks the front panel display of all frequency, power level, and modulation parameters.
DS1	Turns off the secure mode and restores the front panel display of all frequency, power level, and modulation parameters.
RL	Returns the 690XXB to local (front panel) control.
RST	Resets the 690XXB to its default settings.
	NOTE Sending this command clears the current instrument setup. If this setup is needed for future testing, save it as a stored setup (para. 2-10) before sending RST.
SNR	Permits entry of the instrument serial number (SNRnnnnnX). The serial number, represented by nnnnn, must be six char- acters in length.

2-21	PROGRAM ERRORS		ors can occur in bus programming—invalid-parameter se two error types are described in the following para-
		Invalid- Parameter	Invalid-parameter errors are those that cause the CW generator to beep. These errors include:
			 Attempting to enter a frequency, time, or power level parameter that exceeds the limits of the CW generator. Failing to properly end a parameter entry with a suitable terminator such as MH, DB, MS, etc.
		Syntax	Syntax errors are those that occur in the formula- tion of a program statement, such as writing "EXTTFS" instead of "EXTTRS".
			To prevent misinterpretation of command state- ments, the CW generator ignores all portions of the command statement following the syntax error.
			All commands are ignored until the CW generator receives the Unlisten command (ASCII 63; "?" char- acter) over the bus or until the CW generator is ad- dressed to talk.

RESET PROGRAMMING AND DEFAULT CONDITIONS

2-22 RESET PROGRAMMING AND DEFAULT CONDITIONS

Table 2-21 describes the five methods that can be used to reset the CW generator. They provide a means for quickly returning the 690XXB to its default (preprogrammed) operational state.

The default settings for the numeric frequency, sweep time, and power level parameters are the same as those listed in Table 3-1 on page 3-16 of the Series 690XXB Synthesized CW Generator Operation Manual (P/N 10370-10341).

Figure 2-19 (page 2-62) provides an example of a recommended sequence for programming a reset command. Using this command sequence ensures that all parameters and commands assume their preprogrammed state each time reset is desired.

Methods of Resetting GPIB Interface Circuits	Functions Affected	Default Conditions
1. Pressing the front panel menu RETURN TO LOCAL soft-key.	Bus Messages	Local
2. Pressing the front panel System menu RESET soft-key.	Service Request Modes	ES0, FB0, PE0, SB0, SE0, SQ0, UL0, SB0 GTS Local and Local Lockout
3. Sending the RST com- mand over the bus.	Same as 2 above	Same as 2 above except that the local bus message is not reset.
4. Executing the interface message Device Clear.	Same as 2 above.	Same as 2 above except that the local bus message is not reset.
5. Turning power on and off.	Same as 2 above.	Places the GPIB into the power-on state. Instrument state does not change.

Sample Coding In Basic

10 CLEAR 705 20 OUTPUT 705; "FUL IL1 L1 10DM"

Explanation of Code Line 10 sends the Device Clear bus message. This message clears the CW generator GPIB interface.

Line 20 sends new front panel settings: Full Sweep, Internal Leveling, and Output Power Level of 10 dBm.

Figure 2-19. Reset Programming Example

2-23 PROGRAMMING Figures 2-20 thru 2-22, on the following pages, provide three examples of GPIB programming using 690XXB command codes.

The following subroutine uses the output identify (OI) command to identify the CW generator's model number, serial number, minimum and maximum frequencies, minimum and maximum power level, and software revision level. This subroutine is used in the example programs in Figures 2-21 and 2-22 to read the limits of the CW generator.

```
10 !
        "GET OI"
 20 ! Gets the output id string
 30 ! from a 69XXXX Synthesizer
100 OUTPUT 705; "OI"
110 DIM A$[36]
120 ENTER 705; AS
130 M$=A$[1,2] ! Model
140 M1$=A$[3,4] ! Model Number
150 F1$=A$[5,9] ! Freq Low
160 F2$=A$[10,14] ! Freq High
170 L2$=A$[15,20] ! Min Power
180 L1$=A$[21,24] ! Max Power
190 S$=A$[25,28] ! Software Ver
200 S1$=A$[29,34] ! Serial Number
210 P$=A$[35,35] ! Model Prefix
220 S2$=A$[36] ! Series
230 PRINT "Model Number :";M$;S2$;M1$;P$
240 PRINT "Serial Number :";S1$
250 PRINT "Low Freq :";F1$
260 PRINT "High Freq :";F2$
270 PRINT "Max Power :";L1$
280 PRINT "Min Power :";L2$
290 PRINT "Software Ver :";S$
300 END
```

Program Explanation

Line 100: Sends the "OI" command. Line 110: Dimensions the variable. Line 120: Gets the "OI" string. Line 130: Sets M\$ to the model (69). Line 140: Sets M1\$ to the model number. Line 150: Sets F1\$ to the CW generator low-end frequency. Line 160: Sets F2\$ to the CW generator high-end frequency. Line 170: Sets L2\$ to the minimum power point. Line 180: Sets L1\$ to the maximum power point. Line 190: Sets S\$ to the software version number. Line 200: Sets S1\$ to the serial number. Line 210: Sets S\$ to the model prefix number (0,1, or 2). Line 220: Sets S2\$ to the model series (A or B). Lines 230-290: Prints the data obtained.

Figure 2-20. Using the Output Identify (OI) Command

The following program (1) receives entries from the keyboard to set intial frequency and step-size parameters, and (2) activates the soft keys on the controller so that they can step the frequency up or down.

Program Explanation

Line 30: Sets the address of the CW generator. Line 40: Calls the device identification subroutine described in Line 1010. *Line 50:* Turns off the key definitions. Lines 60-110: Accept the starting frequency entry and checks its validity. Lines 120-170: Accept the step size entry and checks its validity. Line 180: Sets the CW generator to the starting frequency and step size. *Lines 190-240:* Set up keys and key labels. Line 250: Waits for a key to be pressed. Line 300: Reports that the STEP UP key was pressed; sends the UP command. Line 310: Waits for the next key. Line 320: Reports that the STEP DOWN key was pressed; send the DN command. Line 330: Waits for the next key. Line 340: Ends the main program. Lines 1010-1120: Identify the CW generator address, model, frequency ' range, and power range.

```
20 ! PARAMETER ENTRY, SYZ, UP, AND DN COMMANDS
  30 Address=705
  40 CALL Iddev(Address, Model, Fmin, Fmax, Pmin, Pmax)
  50 OFF KEY
  60 DISP "ENTER FREQUENCY IN GHZ";
 70 INPUT Freq
  80 IF Freq>Fmax OR Freq<Fmin THEN
 90
       DISP "FREQUENCY OUT OF RANGE - ";
 100
       GOTO 60
110 END IF
120 DISP "ENTER STEP SIZE IN GHZ";
 130 INPUT Stepsize
140 IF Stepsize>Fmax-Fmin OR Stepsize<.000001 THEN
       DISP "ILLEGAL STEP SIZE - ";
150
160
       GOTO 120
170 END IF
180 OUTPUT Address; "CF1"; Freq; "GH SYZ"; Stepsize; "GH"
190 ON KEY O LABEL "STEP" GOTO 300
200 ON KEY 5 LABEL " UP " GOTO 300
210 ON KEY 1 LABEL "STEP" GOTO 320
220 ON KEY 6 LABEL "DOWN" GOTO 320
230 ON KEY 2 LABEL "NEW " GOTO 50
240 ON KEY 7 LABEL "FREQ" GOTO 50
250 GOTO 250
300 OUTPUT Address; "UP"
310 GOTO 250
320 OUTPUT Address; "DN"
330 GOTO 250
340 END
1010 SUB Iddev(Address, Model, Fmin, Fmax, Pmin, Pmax)
1020 DIM Ident$[36]
1030 OUTPUT Address; "OI"
1040 ENTER Address; Ident$
1050 Model=VAL(Ident$[1,2])
1060 Model Number=VAL(Ident$[3,4])
1070 Fmin=VAL(Ident$[5,9])
1080 Fmax=VAL(Ident$[10,14])
1090 Pmin=VAL(Ident$[15,20])
1100 Pmax=VAL(Ident$[21,24])
1110 Model Prefix=Ident$[35,35]
1120 Series=VAL(Ident$[36])
1130 SUBEND
```

Figure 2-21. Controlling CW Frequency/Parameter Entries

The following program accepts user inputs for (1) power sweep starting and ending levels, (2) number of steps in the sweep, and (3) sweep dwell times. After accepting such imputs, the program then commands the CW generator to obtain a display of the power sweep.

NOTE: The CW generator should be connected to a scalar network analyzer.

30 Address=705

Program Explanation *Line 30:* Set the address of the CW generator. Line 40: Call the device identification subroutine described in line 1010. Lines 60-110: Accept the starting power level entry and checks its validitv. Lines 120-170: Accept the ending power level entry and checks its validity. Lines 180-230: Accept the power sweep number-of-steps entry and checks it validity. *Lines 240-290:* Accept the power sweep dwell time entry and checks its¹ validity. Lines 300-310: Sets the CW generator to perform the above defined power sweep. Line 340: Ends the main program. Lines 1010-1120: Identify the CW generator address, model, frequency range, and power range.

40 CALL Iddev(Address, Model, Fmin, Fmax, Pmin, Pmax) 60 DISP "ENTER POWER SWEEP STARTING LEVEL (dBm)"; **70 INPUT Powerstart** 80 IF Powerstart>Pmax OR Powerstart<Pmin THEN 90 DISP "POWER OUT OF RANGE - "; 100 GOTO 60 110 ENDIF 120 DISP "ENTER POWER SWEEP ENDING LEVEL (dBm)"; **130 INPUT Powerstop** 140 IF Powerstop>Pmax OR Powerstop<Pmin THEN 150 DISP "POWER OUT OF RANGE - "; 160 **GOTO 120** 170 END IF 180 DISP "ENTER NUMBER OF STEPS"; **190 INPUT Noofsteps** 200 IF Noofsteps<1 OR Noofsteps>10000 THEN 210 DISP "NUMBER OF STEPS OUT OF RANGE - "; 220 **GOTO** 180 230 END IF 240 DISP "ENTER DWELL TIME AT EACH STEP (mS)"; 250 INPUT Dwell 260 IF Dwell<1 OR Dwell>99000 THEN 270 DISP "DWELL TIME OUT OF RANGE - "; 280 **GOTO 240** 290 END IF 300 OUTPUT Address; "L1"; Powerstart: "DM L2"; Powerstop; "DM PNS";Noofsteps;"SPS" 310 OUTPUT Address; "PDT"; Dwell; "MS LSP" 340 END 1010 SUB Iddev(Address, Model, Fmin, Fmax, Pmin, Pmax) 1020 DIM Ident\$[36] 1030 OUTPUT Address; "OI" 1040 ENTER Address; Ident\$ 1050 Model=VAL(Ident\$[1,2]) 1060 Model Number=VAL(Ident\$[3,4]) 1070 Fmin=VAL(Ident\$[5,9]) 1080 Fmax=VAL(Ident\$[10,14]) 1090 Pmin=VAL(Ident\$[15,20]) 1100 Pmax=VAL(Ident\$[21,24]) 1110 Model Prefix=Ident\$[35,35] 1120 Series=VAL(Ident\$[36]) 1130 SUBEND

Figure 2-22. Controlling Power Level and Power Sweep

Appendix A Index of GPIB Commands

A-1 INTRODUCTION

This appendix provides an alphabetical index of the GPIB Product Specific Commands for the 690XXB. The index lists the command mnemonic code, a brief description of the command function, and the page number in Chapter 2 where a complete description of the command can be found.

Command Code	Function	Page Number
ACW	Activates currently scanned frequency as CW	2-13
AD1	Selects F1- Δ F alternate step sweep	2-16
AD5	Selects F5-∆F alternate step sweep	2-16
AD6	Selects F6- Δ F alternate step sweep	2-16
ADD	Opens the GPIB address parameter	2-59
ADR	GPIB address terminator	2-11
AF1	Selects F1-F2 alternate step sweep	2-16
AF3	Selects F3-F4 alternate step sweep	2-16
AFU	Selects Full Range alternate step sweep	2-16
AL0	Set alternate sweep RF output level to L0	2-22
AL1	Set alternate sweep RF output level to L1	2-22
AL2	Set alternate sweep RF output level to L2	2-22
AL3	Set alternate sweep RF output level to L3	2-22
AL4	Set alternate sweep RF output level to L4	2-22
AL5	Set alternate sweep RF output level to L5	2-22
AL6	Set alternate sweep RF output level to L6	2-22
AL7	Set alternate sweep RF output level to L7	2-22
AL8	Set alternate sweep RF output level to L8	2-22
AL9	Set alternate sweep RF output level to L9	2-22
AT0	Deselects step attenuator decouple mode	2-24
AT1	Selects step attenuator decouple mode on	2-24
ATT(xx)	Sets step attenuator value to xx (×10 dB) in ALC step attenuator decouple mode. xx is an unsigned integer between 00 and 11.	2-24
AUT	Selects Auto sweep trigger	2-16
BPN	Selects –5V for retrace and bandswitch blanking outputs	2-35
BPP	Selects +5V for retrace and bandswitch blanking outputs	2-35

GPIB Commands (1 of 11)

Command Code	Function	Page Number
CF0	Set CW mode at F0, Opens F0 parameter	2-13
CF1	Set CW mode at F1, Opens F1 parameter	2-13
CF2	Set CW mode at F2, Opens F2 parameter	2-13
CF3	Set CW mode at F3, Opens F3 parameter	2-13
CF4	Set CW mode at F4, Opens F4 parameter	2-13
CF5	Set CW mode at F5, Opens F5 parameter	2-13
CF6	Set CW mode at F6, Opens F6 parameter	2-13
CF7	Set CW mode at F7, Opens F7 parameter	2-13
CF8	Set CW mode at F8, Opens F8 parameter	2-13
CF9	Set CW mode at F9, Opens F9 parameter	2-13
CLO	Closes the open parameter	2-10
CLR	Clears data entry	2-10
CM0	Set CW mode at M0, Opens M0 parameter	2-13
CM1	Set CW mode at M1, Opens M1 parameter	2-13
CM2	Set CW mode at M2, Opens M2 parameter	2-13
CM3	Set CW mode at M3, Opens M3 parameter	2-13
CM4	Set CW mode at M4, Opens M4 parameter	2-13
CM5	Set CW mode at M5, Opens M5 parameter	2-13
CM6	Set CW mode at M6, Opens M6 parameter	2-13
CM7	Set CW mode at M7, Opens M7 parameter	2-13
CM8	Set CW mode at M8, Opens M8 parameter	2-13
CM9	Set CW mode at M9, Opens M9 parameter	2-13
CSO	Turns off the CW ramp	2-59
CS1	Turns on the CW ramp	2-59
CSB	Clears all GPIB status bytes	2-33
CTL	Copy current CW frequency and power level to current list index	2-38
DB	dB data terminator	2-11
DF0	Selects the F0- Δ F step sweep mode	2-16
DF1	Selects the F1- Δ F step sweep mode	2-16
DF5	Selects the F5- Δ F step sweep mode	2-16
DF6	Selects the F6- Δ F step sweep mode	2-16
DFF	Opens the ΔF parameter (Same as DLF)	2-8
DFM	Opens the ΔF parameter (Same as DLF)	2-8
DL1	Selects external detector leveling of the output power	2-23
DLF	Opens the ΔF parameter	2-8
DM	dBm data terminator	2-11

GPIB Commands (2 of 11)

Command Code	Function	Page Number
DN	 Decrements the open parameter by the step size In list sweep mode with manual trigger selected, decrements the list index by one 	2-10 2-38
DS0	Turns on the secure mode (Blanks the front panel display of Frequency and Power Level parameters)	2-59
DS1	Turns off the secure mode and restores front panel display of all parameters	2-59
DU0	Deselects Dual Step sweep mode	2-16
DU1	Selects Dual Step sweep mode on	2-16
DV	Decibel/Volt (dB/V) data terminator	2-11
EGI	Opens the Reference Level DAC setting parameter (in external power leveling mode)	2-9
EGO	Output value of the Reference Level DAC setting in external power leveling mode	2-23
ELF	Selects front panel external leveling input	2-23
ELR	Selects rear panel external leveling input	2-23
EL0	Inhibits updating of the ESB2 bit 4 (RF Unlocked)	2-33
EL1	Enables updating of the ESB2 bit 4 (RF Unlocked)	2-33
ELI(xxxx)	Sets list index to xxxx, where xxxx = 4-digit integer between 0000 and 1999	2-38
ELN(x)	Sets list number to x, where $x = 1$ -digit integer between 0 and 3	2-38
ES0	Inhibits End-of-Sweep SRQ generation	2-32
ES1	Enables End-of-Sweep SRQ generation	2-32
EXT	Selects single sweep trigger	2-16
F0	Opens the F0 parameter	2-8
F1	Opens the F1 parameter	2-8
F2	Opens the F2 parameter	2-8
F3	Opens the F3 parameter	2-8
F4	Opens the F4 parameter	2-8
F5	Opens the F5 parameter	2-8
F6	Opens the F6 parameter	2-8
F7	Opens the F7 parameter	2-8
F8	Opens the F8 parameter	2-8
F9	Opens the F9 parameter	2-8
FB0	Inhibits Extended Status Byte 1 SRQ generation	2-32
FB1	Enables Extended Status Byte 1 SRQ generation	2-32
FRS	Opens the frequency scaling reference multiplier parameter	2-35
FUL	Selects the Full Range step sweep mode	2-16

GPIB Commands (3 of 11)

Command Code	Function	Page Number
GH	GHz data terminator	2-11
GTC	Scans to the next higher preset CW frequency on a GET (Executes a "SQF" command)	2-35
GTD	Steps the open parameter down by the step size on a GET (Executes a "DN" command)	2-36
GTF	Executes a Fast-frequency-switching step on a GET (See "ZL, ZEL" commands)	2-36
GTL	Steps to the next point in a dual step sweep mode on a GET (Executes a "TSS" command)	2-36
GTO	Disables the GET functions	2-36
GTS	Triggers a single sweep on a GET (Executes a "TRS" com- mand	2-36
GTT	Executes a complete CW generator self test on a GET (Executes a "TST" command)	2-36
GTU	Steps the open parameter up by the setp size on a GET (Executes an "UP" command)	2-36
GV	GHz per volt (GHz/V) data terminator	2-11
HWT	Selects external sweep trigger	2-16
HZ	Hz data terminator	2-11
*IDN?	Outputs the instrument identification string	2-25
110	Enables updating of the ESB2 bit 7 (Parameter Changed)	2-33
ll1	Inhibits updating of the ESB2 bit 7 (Parameter Changed)	2-33
IL1	Selects internal leveling of the output power	2-23
KH	kHz data terminator	2-11
KV	kHz per volt (kHz/V) data terminator	2-11
LO	Sets RF output power level to L0	2-22
L1	Sets RF output power level to L1	2-22
L2	Sets RF output power level to L2	2-22
L3	Sets RF output power level to L3	2-22
L4	Sets RF output power level to L4	2-22
L5	Sets RF output power level to L5	2-22
L6	Sets RF output power level to L6	2-22
L7	Sets RF output power level to L7	2-22
L8	Sets RF output power level to L8	2-22
L9	Sets RF output power level to L9	2-21
LA0	Inhibits updating of ESB1 bit 7 (RF Leveled)	2-33
LA1	Enables updating of ESB1 bit 7 (RF Leveled)	2-33
LDT	Opens the list sweep dwell time parameter	2-10
LE0	Inhibits Lock Error SRQ generation	2-32
LE1	Enables Lock Error SRQ generation	2-32

GPIB Commands (4 of 11)

Command Code	Function	Page Number
LEA	Learn list (in list sweep mode)	2-38
LF	Sets list frequencies starting at the list index	2-38
LGS	Selects logarithmic step sweep	2-16
LIB(xxxx)	Sets the list start index to xxxx, where xxxx = 4-digit integer between 0000 and 1999	2-38
LIE(xxxx)	Sets the list stop index to xxxx, where xxxx = 4-digit integer between 0000 and 1999	2-38
LIN	Selects linear power level operation	2-22
LIS	Selects linear step sweep	2-16
LOS	Opens the level offset parameter	2-9
LO0	Turns off the Level Offset function	2-23
LO1	Turns on the Level Offset function	2-23
LOG	Selects logarithmic power level operation	2-22
LP	Sets list power levels starting at the list index	2-38
LS0	Inhibits updating of the ESB1 bit 3 (RF Locked)	2-33
LS1	Enables updating of the ESB1 bit 3 (RF Locked)	2-33
LSP	Selects the Power Sweep mode	2-23
LST	Places the 690XXB in list sweep mode	2-38
LUR	Readies the 690XXB to receive five tables of user level calibration data from the controller.	2-48
LUS	Sends all five tables of user level calibration data to the controller.	2-48
LU0	Turns off the active user level calibration table	2-48
LU1	Activates user level calibration table #1	2-48
LU2	Activates user level calibration table #2	2-48
LU3	Activates user level calibration table #3	2-48
LU4	Activates user level calibration table #4	2-48
LU5	Activates user level calibration table #5	2-48
LV0	Turns off leveling of the output power	2-23
MO	Opens the M0 parameter	2-8
M1	Opens the M1 parameter	2-8
M2	Opens the M2 parameter	2-8
M3	Opens the M3 parameter	2-8
M4	Opens the M4 parameter	2-8
M5	Opens the M5 parameter	2-8
M6	Opens the M6 parameter	2-8
M7	Opens the M7 parameter	2-8
M8	Opens the M8 parameter	2-8
M9	Opens the M9 parameter	2-8

GPIB Commands (5 of 11)

Command Code	Function	Page Number
MAN	Selects manual (step) sweep	2-16
MB0	Sets the enable mask byte for the Primary Status Byte	2-32
MB1	Sets the enable mask byte for Extended Status Byte 1	2-32
MB2	Sets the enable mask byte for Extended Status Byte 2	2-32
ME0	Disables the marker at the active frequency	2-20
ME1	Enables a marker at the active frequency	2-20
MH	MHz data terminator	2-11
MK0	Turns off markers	2-20
MNT	Selects manual trigger (list sweep mode)	2-38
MS	Milliseconds (ms) data terminator	2-11
MV	MHz per volt (MHz/V) data terminator	2-11
NS	Nanoseconds (ns) data terminator	2-11
ODF	Returns the ΔF frequency value (in MHz) to the controller	2-27
OEM	Returns the Extended SRQ Mask bytes (3 binary bytes) to the controller	2-27
OES	Returns all three GPIB status bytes to the controller	2-27
OF0	Returns the F0 frequency value (in MHz) to the controller	2-25
OF1	Returns the F1 frequency value (in MHz) to the controller	2-25
OF2	Returns the F2 frequency value (in MHz) to the controller	2-25
OF3	Returns the F3 frequency value (in MHz) to the controller	2-25
OF4	Returns the F4 frequency value (in MHz) to the controller	2-25
OF5	Returns the F5 frequency value (in MHz) to the controller	2-25
OF6	Returns the F6 frequency value (in MHz) to the controller	2-25
OF7	Returns the F7 frequency value (in MHz) to the controller	2-25
OF8	Returns the F8 frequency value (in MHz) to the controller	2-25
OF9	Returns the F9 frequency value (in MHz) to the controller	2-25
OFH	Returns the high-end frequency value (in MHz) to the controller	2-25
OFL	Returns the low-end frequency value (in MHz) to the controller	2-25
OI	Returns the instrument identification string to the controller	2-25
OL0	Returns the L0 power level value (in dBm when in log mode; in mV when in linear mode) to the controller	2-26
OL1	Returns the L1 power level value (in dBm when in log mode; in mV when in linear mode) to the controller	2-26
OL2	Returns the L2 power level value (in dBm when in log mode; in mV when in linear mode) to the controller	2-26
OL3	Returns the L3 power level value (in dBm when in log mode; in mV when in linear mode) to the controller	2-26

GPIB Commands (6 of 11)

<u> </u>		
Command Code	Function	Page Number
OL4	Returns the L4 power level value (in dBm when in log mode; in mV when in linear mode) to the controller	2-26
OL5	Returns the L5 power level value (in dBm when in log mode; in mV when in linear mode) to the controller	2-26
OL6	Returns the L6 power level value (in dBm when in log mode; in mV when in linear mode) to the controller	2-26
OL7	Returns the L7 power level value (in dBm when in log mode; in mV when in linear mode) to the controller	2-26
OL8	Returns the L8 power level value (in dBm when in log mode; in mV when in linear mode) to the controller	2-26
OL9	Returns the L9 power level value (in dBm when in log mode; in mV when in linear mode) to the controller	2-26
OLO	Returns the Level Offset power level (in dB when in log mode; in mV when in linear mode) to the controller	2-26
OM0	Returns the M0 frequency value (in MHz) to the controller	2-25
OM1	Returns the M1 frequency value (in MHz) to the controller	2-26
OM2	Returns the M2 frequency value (in MHz) to the controller	2-26
OM3	Returns the M3 frequency value (in MHz) to the controller	2-26
OM4	Returns the M4 frequency value (in MHz) to the controller	2-26
OM5	Returns the M5 frequency value (in MHz) to the controller	2-26
OM6	Returns the M6 frequency value (in MHz) to the controller	2-26
OM7	Returns the M7 frequency value (in MHz) to the controller	2-26
OM8	Returns the M8 frequency value (in MHz) to the controller	2-26
OM9	Returns the M9 frequency value (in MHz) to the controller	2-26
OPD	Returns the power sweep dwell time (in ms) to the controller	2-27
OPS	Returns the power sweep number of steps to the controller	2-27
OSB	Returns the Primary Status Byte (1 binary byte) to the controller	2-27
OSD	Returns the step sweep dwell time (in ms) to the controller	2-27
OSE	Returns the last GPIB syntax error to the controller	2-27
OSM	Returns the primary SRQ Mask byte (1 binary byte) to the controller	2-27
OSR	Returns the self-test results (6 binary bytes) to the controller	2-27
OSS	Returns the step sweep number of steps to the controller	2-27
OST	Returns the sweep time value (in ms) to the controller	2-27
OVN	Returns the ROM version number string to the controller	2-27
OWT	Returns the GPIB termination status to the controller; 0 = CR, 1 = CRLF	2-27
PCT	Percent (%) data terminator	2-11

GPIB Commands (7 of 11)

Command Code	Function	Page Number
PCV	Percent per volt (%/V) data terminator	2-11
PDT	Opens the power sweep dwell time parameter	2-9
PE0	Inhibits Parameter Range Error SRQ generation	2-32
PE1	Enables Parameter Range Error SRQ generation	2-32
PL1	Selects external power meter leveling of the output power	2-23
PNS	Opens the power sweep number of steps parameter	2-9
PPO	Selects normally-open contacts on the pen lift relay	2-35
PPC	Selects normally-closed contacts on the pen lift relay	2-35
PT0	Disables the Power Offset Table	2-45
PT1	Enables the Power Offset Table	2-45
PTC	Changes a Power Offset Table entry	2-45
PTL	Loads a Power Offset Table	2-45
PVT	Opens the ALC power slope pivot point frequency parameter	2-9
RO0	Selects RF to be on at reset.	2-35
RO1	Selects RF to be off at reset.	2-35
RC0	Selects RF off during frequency switching in CW, step sweep, and list sweep modes	2-35
RC1	Selects RF on during frequency switching in CW, step sweep, and list sweep modes	2-35
RCF	Readies the 690XXB to receive a new instrument setup from the controller	2-28
RCM	Readies the 690XXB to receive a new instrument setup and new stored setups from the controller	2-28
RF0	Turns off the RF output	2-22
RF1	Turns on the RF output	2-22
RL	Returns the instrument to local control	2-59
RSN(M _{1 - 9})	Recalls an instrument setup stored in internal setup memory location M, where $M = 1$ to 9.	2-28
RSS	Reset a sweep if in progress	2-16
RST	Resets the instrument to its default settings	2-59
RT0	Selects RF to be off during retrace	2-35
RT1	Selects RF to be on during retrace	2-35
S0	Turns off the Master-Slave mode of operation	2-56
S1	Turns on the Master-Slave mode of operation	2-56
SAF	Outputs the current instrument setup to the controller	2-28
SAM	Outputs the current instrument setup and all stored setups to the controller	2-28
SB0	Inhibits Extended Status Byte 2 SRQ generation	2-32
SB1	Enables Extended Status Byte 2 SRQ generation	2-32

GPIB Commands (8 of 11)

Command Code	Function	Page Number
SDT	Opens the step sweep dwell time parameter	2-9
SE0	Inhibits Syntax Error SRQ generation	2-33
SE1	Enables Syntax Error SRQ generation	2-33
SEC	Seconds data terminator	2-11
SF1	Selects the F1-F2 step sweep mode	2-16
SF3	Selects the F3-F4 step sweep mode	2-16
SLDF	Opens the ΔF parameter for the Slave unit	2-9
SLF0	Opens the F0 parameter for the Slave unit	2-8
SLF1	Opens the F1 parameter for the Slave unit	2-8
SLF2	Opens the F2 parameter for the Slave unit	2-8
SLF3	Opens the F3 parameter for the Slave unit	2-8
SLF4	Opens the F4 parameter for the Slave unit	2-8
SLF5	Opens the F5 parameter for the Slave unit	2-8
SLF6	Opens the F6 parameter for the Slave unit	2-8
SLF7	Opens the F7 parameter for the Slave unit	2-8
SLF8	Opens the F8 parameter for the Slave unit	2-8
SLF9	Opens the F9 parameter for the Slave unit	2-8
SLL1	Opens the main power level parameter (L1) for the Slave unit	2-10
SLL2	Opens the alternate sweep power level parameter (L2) for the Slave unit	2-10
SLM0	Opens the M0 parameter for the Slave unit	2-9
SLM1	Opens the M1 parameter for the Slave unit	2-9
SLM2	Opens the M2 parameter for the Slave unit	2-9
SLM3	Opens the M3 parameter for the Slave unit	2-9
SLM4	Opens the M4 parameter for the Slave unit	2-9
SLM5	Opens the M5 parameter for the Slave unit	2-9
SLM6	Opens the M6 parameter for the Slave unit	2-9
SLM7	Opens the M7 parameter for the Slave unit	2-9
SLM8	Opens the M8 parameter for the Slave unit	2-9
SLM9	Opens the M9 parameter for the Slave unit	2-9
SL0	Turns off the ALC power slope function	2-23
SL1	Turns on the ALC power slope function	2-23
SLP	Opens the ALC power slope value parameter	2-9
SLV	Opens the main power level parameter (L1) for the Slave unit (Same as SLL1)	2-10
SM	Recalls the next stored instrument setup in sequence	2-28
SNR	Enter the instrument serial number (SNRnnnnnX)	2-59
SNS	Opens the step sweep number of steps parameter	2-9

GPIB Commands (9 of 11)

Command Code	Function	Page Number
SOF	Opens the frequency offset parameter for the Slave unit	2-10
SPS	Steps data terminator	2-11
SP0	Deselects non-equally spaced step sweep	2-16
SP1	Selects non-equally spaced step sweep	2-16
SQ0	Disables the SRQ generation function	2-33
SQ1	Enables the SRQ generation function	2-33
SQD	Scan down to next lower preset CW frequency	2-13
SQF	Scan to next higher preset CW frequency	2-13
SQU	Scan up to next higher preset CW frequency	2-13
SSN(M _{1 - 9})	Saves the current instrument setup in internal setup memory location M, where $M = 1$ to 9	2-28
SSP	Selects step sweep (linear)	2-16
SWT	Opens the step sweep and CW ramp time parameter	2-9
SYZ	Opens the increment/decrement step size parameter	2-12
TMS	Times terminator	2-11
TR0	Sets 0 dB of attenuation when RF is switched off in units with a step attenuator (Option 2) installed.	2-35
TR1	Sets 40 dB (minimum) of attenuation when RF is switched off in units with a step attenuator (Option 2) installed.	2-35
TRG	Triggers a single sweep	2-16
TRS	Triggers a single sweep (Same as TRG)	2-16
TSS	Advances sweep to next step in dual step sweep mode	2-16
TST	Starts an instrument self-test	2-57
UL0	Inhibits RF Unleveled SRQ generation	2-33
UL1	Enables RF Unleveled SRQ generation	2-33
UP	 Increment the open parameter by step size In list sweep mode with manual trigger selected, increments the list index by one 	2-10 2-38
US	Microseconds (µs) data terminator	2-11
VM1	Turns on the Video marker mode	2-20
VT	Volts data terminator	2-11
XL0	Opens the L0 parameter	2-8
XL1	Opens the L1 parameter	2-8
XL2	Opens the L2 parameter	2-8
XL3	Opens the L3 parameter	2-8
XL4	Opens the L4 parameter	2-8
XL5	Opens the L5 parameter	2-8
XL6	Opens the L6 parameter	2-8
XL7	Opens the L7 parameter	2-8

GPIB Commands (10 of 11)

Command Code	Function	Page Number
XL8	Opens the L8 parameter	2-8
XL9	Opens the L9 parameter	2-8
Y	Equivalent to a Group Excute Trigger (GET)	2-36
ZL(X ₀₀₀₋₉₉₉)	Loads a CW frequency into the stack at location X (fast- frequency-switching mode)	2-41
ZEL	Ends frequency loading (fast-frequency-switching mode)	2-41
ZPN	Sets the table pointer to point to location bbbb (fast-frequency-switching mode)	2-41
ZS(X ₀₀₀₋₉₉₉)	Sets the stack pointer to point to location X (fast- frequency-switching mode)	2-41
ZTL	Loads the frequency table starting at location bbbb (fast- frequency-switching mode)	2-41

GPIB Commands (11 of 11)